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ABSTRACT

Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted

through, vegetation canopies do not vary with wavelength. These ‘‘spectrally invariant relationships’’ are the

consequence of wavelength independence of the extinction coefficient and scattering phase function in veg-

etation. In general, this wavelength independence does not hold in the atmosphere, but in cloud-dominated

atmospheres the total extinction and total scattering phase function vary only weakly with wavelength. This

paper identifies the atmospheric conditions under which the spectrally invariant approximation can accu-

rately describe the extinction and scattering properties of cloudy atmospheres. The validity of the as-

sumptions and the accuracy of the approximation are tested with 1D radiative transfer calculations using

publicly available radiative transfer models: Discrete Ordinate Radiative Transfer (DISORT) and Santa

Barbara DISORT Atmospheric Radiative Transfer (SBDART). It is shown for cloudy atmospheres with

cloud optical depth above 3, and for spectral intervals that exclude strong water vapor absorption, that the

spectrally invariant relationships found in vegetation canopy radiative transfer are valid to better than 5%.

The physics behind this phenomenon, its mathematical basis, and possible applications to remote sensing and

climate are discussed.

1. Introduction

Recently several papers reported the discovery of

spectrally invariant behavior in some simple algebraic

combinations, called ‘‘spectral invariants,’’ of single

scattering albedo and solar radiation reflected from or

transmitted through vegetation canopies (Knyazikhin

et al. 1998, 2005; Huang et al. 2007). The spectral in-

variant phenomenon is clearly seen in radiative mea-

surements and remote sensing data (Panferov et al. 2001;

Wang et al. 2003). The phenomenon was theoretically

explained and numerically simulated using radiative

transfer theory (Knyazikhin et al. 2011; Smolander and

Stenberg 2005). There are three key parameters that

characterize the radiative transfer process: the extinction

coefficient, scattering phase function, and single scatter-

ing albedo. In vegetation, the optical distance between

two points within the canopy does not depend on wave-

length because the scattering elements are much larger

than the wavelength of solar radiation (Ross 1981). And

the canopy scattering phase function is also wavelength

independent since it is determined by large scattering

elements such as twigs and leaves. Thus, of the three key

variables, the single scattering albedo is the only one

with significant wavelength dependency. This allows for

a natural separation between structural and spectral pa-

rameters of radiative transfer: the extinction coefficient
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and scattering phase function are purely structural, while

the single scattering albedo is purely spectral.

This separation does not hold for the atmosphere

where extinction and scattering due to Rayleigh mole-

cules and aerosols, as well as gaseous absorption, depend

strongly on wavelength. However, under some cloudy

atmospheric conditions the physical processes that vary

weakly with wavelength (e.g., cloud scattering) may dom-

inate. Then, for a large range of wavelengths, the extinc-

tion coefficient and the scattering phase function may

be weakly spectrally variable.

In loose analogy with the structural/spectral separa-

tion that occurs in vegetation radiative transfer, the

standard method for cloud remote sensing from space

(Nakajima and King 1990) retrieves optical depth and

droplet effective radius. Optical depth is the structural

parameter with no significant wavelength dependence,

while effective radius strongly affects single scattering

albedo (Twomey and Bohren 1980). The Nakajima–King

method decomposes the radiative measurements into

structural (optical depth) and spectral (effective radius)

parameters. It takes advantage of the fact that radiation

in the visible, where particles do not absorb, is much more

sensitive to cloud optical depth than to droplet size. In

contrast, in the near infrared, where water absorbs, the

radiance changes substantially with effective radius and

is insensitive to cloud optical depth, at least for thicker

clouds.

The above analogy between cloud and vegetation

remote sensing is not perfect because generally cloud

droplet size also affects the scattering phase function.

However, we can still ask how well the spectral invariant

approach in vegetation canopies works for cloudy atmo-

spheres. The goal of this paper is to answer that question.

The plan of the paper is as follows. In the next section

we sketch the general concept of spectral invariance (SI)

and demonstrate its validity with simple Discrete Ordi-

nate Radiative Transfer model (DISORT) calculations.

Section 3 looks at the extent to which the spectral vari-

ability of the extinction and scattering properties in cloudy

atmospheres meets the needs of spectral invariance the-

ory. Section 4 illustrates the spectrally invariant behavior

of radiances and fluxes and discusses its physical in-

terpretation. Accuracy of the spectral invariant approxi-

mation is discussed in section 5, and section 6 briefly

describes its possible implementations in remote sensing

and climate modeling. Finally, the appendix provides

a physical and mathematical basis for spectral invariance.

2. Spectral invariance

Spectral invariance states that simple algebraic com-

binations of the spectra of single scattering albedo and

reflected and/or transmitted radiation eliminate the de-

pendences on wavelength (Huang et al. 2007; Knyazikhin

et al. 2011). In many cases spectral dependency can be

compressed into a linear relationship

y(l) 5 ax(l) 1 b, (1)

where parameters a and b are independent of wave-

length l, and functions y(l) and x(l) are algebraic com-

binations of measured spectra.

Spectrally invariant relationships were originally de-

rived for vegetation canopies with ‘‘black’’ soil. Here we

briefly summarize the ‘‘nontraditional’’ derivation (e.g.,

Schull et al. 2007) of radiative transfer in an absorbing

and reflecting layer, following the diagram in Fig. 1.

We should emphasize that we assume that the standard

diffuse–direct transformation of the radiative transfer

equation has been applied; we are only dealing with the

diffuse part.

Let Tdir be the direct transmittance—that is, the frac-

tion of photons from the incident beam that pass through

the layer in Fig. 1 without colliding. With probability

v0 a collided photon will be scattered and will either

recollide or escape the layer in a given direction V with

probabilities p and r(V), respectively. Here v0, p, and

r(V) are the single scattering albedo, recollision proba-

bility, and directional escape probability, respectively.

While v0 is a well-known parameter in atmospheric

radiation, p and r(V) are less known and thus require

some explanation: p is the conditional probability that

a scattered photon will interact with the medium again

(Smolander and Stenberg 2005), and r(V) is the condi-

tional probability that a scattered photon will leave the

medium in the direction V. The parameters p and r are

simply related. Let us assume for simplicity that Tdir 5 0.

If p is the probability of recollision, then 1 2 p is the total

escape probability and (e.g., Schull et al. 2011)

FIG. 1. Schematic of radiative transfer process. The term Tdir is

the fraction of photons in the incident beam that reach the surface

without interacting. A fraction i0 5 1 2 Tdir therefore interacts with

the medium. With probability v0l, these photons are scattered and

then either interact again (with probability p) or escape the me-

dium in direction V [with probability r(V)].
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ð
4p

r(V)jmj dV 5 1 2 p, (2)

where m is the cosine of a polar angle of V. Here r(V)/

(1 2 p) is the probability density of escape in V as a re-

sult of one interaction; it can be considered as the whole

domain counterpart of the scattering phase function. In

general, p and r depend on the successive order of scat-

tering; however, this dependence weakens as the number

of interactions increases (Huang et al. 2007).

If we assume that p and r do not depend on the

scattering order, the probability that a photon will es-

cape the layer after m interactions is i0rpm21vm
0l, where

i0 5 1 2 Tdir is the fraction of incoming photons that

collide within the layer (Fig. 1). For a purely absorbing

surface (zero lower boundary condition), the fraction of

exiting photons in a given V is simply the sum of these

probabilities over scattering order m; that is,

I
l
(V) 5 r(V)v0l

i0 1 r(V)v2
0lpi0 1 . . .

1 r(V)vm
0lpm21i0 1 . . .

5
v0l

1 2 pv0l

r(V)i0. (3)

So far we have suppressed wavelength dependency in all

quantities except I and v0; v0 is assumed to be the only

spectrally varying parameter. Equation (3) can be re-

arranged as

I
l
(V)

v0l

5 pI
l
(V) 1 r(V)i0. (4)

If p and ri0 do not depend on wavelength, Eq. (4)

qualifies as an SI relationship [Eq. (1)].

Under what conditions is Eq. (4) valid in the atmo-

sphere? In vegetation canopies the extinction coefficient

s is wavelength independent—that is,

s(l) [ s (5a)

—and the scattering phase function P does not depend

on wavelength either:

P(V, V9, l) 5 P(V, V9). (5b)

The single scattering albedo v0l thus becomes the only

spectrally varying parameter in the radiative transfer equa-

tion. As a result, p and r(V) become wavelength in-

dependent (Knyazikhin et al. 2011). In this case, Eq. (4)

forms a straight line on the Il/v0l versus Il plane where

slope and intercept give p and escape factor ri0. (A for-

mal definition of the recollision probability in terms of the

3D radiative transfer equation is given in the appendix).

Figure 2 illustrates the validity of Eq. (4) using the 1D

radiative transfer code DISORT (Stamnes et al. 1988)

with the Henyey–Greenstein scattering phase function

for a cloud with optical depth t 5 10 and different values

of v0 between 0.8 and 1. Although the slope a (an ap-

proximation of p) is mostly determined by the medium

internal structure given by s and P (Smolander and

Stenberg 2005), it also depends weakly on the solar-

viewing geometry as shown in Fig. 2b. However, the

FIG. 2. Linear relationship between the ratio I/v0 and I (I is re-

flected radiance) for t 5 10, and for seven values of v0 from 0.8 to

1.0. A Henyey–Greenstein scattering phase function with asym-

metry factor g 5 0.85 is used. The surface is black. The 1D radiative

transfer code DISORT is used to calculate values of I(t, SZA,

VZA, VAA) where SZA, VZA, and VAA are the solar zenith,

viewing zenith, and viewing azimuth angles, respectively. SZA is

608. (a) VZA 5 08. (b) VZA 5 608; VAA 5 08 (black circles) and

VAA 5 1808 (gray squares).
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viewing geometry mostly affects the intercept of the lin-

ear relationship b, an approximation of r(V).

Obviously, the assumptions in Eqs. (5a) and (5b) are

not met for the atmosphere where both the extinction

due to molecular and aerosol scattering and the gaseous

absorption strongly depend on wavelength. However,

for cloudy conditions and certain wavelength ranges,

the physical processes that vary only weakly with l may

dominate. As a result, the atmospheric extinction co-

efficient and the scattering phase function may be ap-

proximately constant there. Section 3 explores this

possibility.

3. Spectral variability of the extinction and
scattering properties in real atmosphere

Let us calculate the total extinction coefficient as a

function of wavelength:

s
l

5 �
N

k51
sk,l

5 �
N

k51
(ssk,l

1 sak,l
) 5 ss,l

1 sa,l
.

(6a)

Here index k refers to the kth atmospheric constituent,

s to scattering, and a to absorption; for example, Rayleigh

molecules (ss,l 6¼ 0, sa,l 5 0), aerosol particles (ss,l 6¼ 0,

sa,l 6¼ 0), cloud droplets (ss,l 6¼ 0, sa,l 6¼ 0), and gaseous

absorbers (ss,l 5 0, sa,l 6¼ 0). In the radiative transfer

equation the total (or effective) single scattering albedo

is defined as

v0l
5

1

s
l

�
N

k51
sk,l

v0k,l
5

1

s
l

�
N

k51
ssk,l

5
ss,l

s
l

. (6b)

For simplicity, we will characterize the scattering phase

function with the asymmetry parameter:

g
l

5
1

ss,l

�
N

k51
ssk,l

gk,l
. (6c)

Instead of the total extinction coefficient we will use the

total optical depth:

t
l

5 �
N

k51
tk,l

5 �
N

k51
(tsk,l

1 tak,l
) 5 ts,l

1 ta,l
. (6d)

For three values of cloud optical depth, Fig. 3 illustrates

the total optical depth tl 5 tRl 1 tAl 1 tCl 1 tGl and

each of its components: Rayleigh molecules tRl, aero-

sols tAl, clouds tCl, and gas tGl. (Since tCl only weakly

varies with l, we will drop the subscript l, understanding

that tC 5 tC,l50.55 mm). We see that for a thin cloud

(Fig. 3b) spectrally variable aerosol, air molecules, and

gas dominate in the total optical depth and there are few

spectral intervals where tl does not vary over a large

range. However, for thicker clouds (tC $ 3), a spectrally

‘‘flat’’ cloud dominates, making the total optical depth

almost insensitive to spectral variations in tRl and tAl

outside the water vapor absorbing bands. If strongly water

vapor absorbing wavelengths are excluded, the extinction

coefficient becomes weakly dependent on wavelength

and the first condition for the applicability of SI stated

in Eq. (5a) is approximately met.

The total asymmetry parameter of the scattering phase

function (Fig. 4a) for optically thin clouds is strongly

affected by molecular scattering, especially for shorter

wavelengths. For thicker clouds, it exhibits much weaker

variability with wavelength, suggesting that the second

condition for SI, Eq. (5b), is also approximately met.

If the total extinction coefficient and the scattering

phase function are only weakly dependent on wave-

length, the spectral scattering and absorption processes

in clouds are almost entirely determined by spectral

variation in v0l defined by Eq. (6b). Figure 4b shows

v0l for three cloud optical depths: tC 5 0.5, 3, and 10.

Note that, in contrast to the cloud liquid water single

scattering albedo that varies spectrally between 1 and

0.96 depending on droplet size, the total single scattering

albedo is dominated by gaseous absorbing spectral bands

and may fluctuate between 0 (gas only) and 1 (no ab-

sorption), especially for thinner clouds. This also sug-

gests that while thick clouds suppress spectral variability

in the total optical depth and scattering phase function,

v0l varies significantly because of its strong sensitivity to

the absorbing and scattering properties of the atmo-

spheric components. This feature makes it possible to

implement the SI approach by directly relating radiative

spectral properties of the atmosphere to the spectrum

of v0l.

To increase the range of v0l while keeping low spec-

tral variation in tl and gl, we will begin our analysis with

only those wavelengths that have v0l $ 0.8. Table 1

summarizes spectral variation in tl and gl for those

wavelengths. We can see that for tC $ 3, clouds suppress

spectral sensitivity of tl to tRl and tAl optical depths. As

a result, for wavelengths with v0l $ 0.8, the spectral

variation in tl and gl does not exceed 5% and 2%, re-

spectively.

Finally we recall that Eq. (3) was derived under the

assumption that the recollision and directional escape

probabilities do not depend on the scattering order (see

Fig. 1). In a general case, the spectral invariants vary

with the number of successive collisions; however, they
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asymptote quickly as the number of collisions increases

(Huang et al. 2007). For conservative scattering, Davis

and Marshak (1997) estimated the number of forward

scatterings required for particle to lose all memory of its

original direction of travel as (1 2 g)21 ’ 6–7.

4. Radiative transfer calculations

To compute quantity Il(V) in Eq. (3) and its hemi-

spherically integrated counterparts, the reflectance Rl

and transmittance Tl, for wavelength range 0.4–2.5 mm

with 10-nm resolution, we use the publicly available

Santa Barbara DISORT Atmospheric Radiative Trans-

fer (SBDART) code (Ricchiazzi et al. 1998) with a solar

zenith angle of 458. The other key parameters used in our

simulations are listed in Table 2 and their choice is dis-

cussed in Chiu et al. (2010).

Let us come back to Eq. (3), multiply both sides by the

cosine of a polar angle, and integrate over all 4p solid

angle. Accounting for Eq. (2), we get

W
l

5
(1 2 p)v0l

1 2 pv0l

, (7)

FIG. 3. Spectrum of total optical depth of a cloudy atmosphere as defined by Eq. (6d), ac-

counting for air molecules (Rayleigh scattering), cloud droplets (scattering and absorption),

aerosol particles (scattering and absorption), and gases (absorption). Optical depth of aerosol at

l 5 0.55 mm is tA 5 0.2. (a) Three values of cloud optical depth: tC 5 0.5, 3, and 10 at l 5

0.55 mm. (b) Zoom of spectra for tC 5 0.5, cutting off at t 5 2 as indicated by the dotted line in (a).
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where

W
l
(1 2 Tdir) 5 R

l
1 (T

l
2 Tdir) (8a)

is the total radiation that has been reflected Rl from, or

diffusively transmitted (Tl 2 Tdir) through, a cloudy

layer. For sufficiently thick clouds the direct radiation

Tdir ’ 0 and Eq. (8a) becomes

W
l

5 R
l

1 T
l
. (8b)

Here Wl is the whole domain counterpart of v0l while

A0l
5 1 2 W

l

corresponds to the single scattering coalbedo a0l 5 1 2

v0l. From Eq. (7) we can prove that

W
l

# v0l

because p , 1, and thus

A0l
$ a0l

.

Interestingly, the A0l-to-a0l ratio estimates the average

number of photon interactions as a function of wave-

length (Panferov et al. 2001; Knyazikhin et al. 2005):

n
l

5
A0l

a0l

5
1 2 W

l

1 2 v0l

5
1

1 2 pv0l

$ 1. (9)

FIG. 4. (a) Spectra of gl for three cloud optical depths: tC 5 0.5, 3, and 10 with tA,l50.55mm 5

0.2. (b) Spectra of v0l for the same three cases as in (a). See Eqs. (6b) and (6c) for definitions of

‘‘total’’ in each case.
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The final equality in Eq. (9) follows directly from Eq. (7).

Note that the reciprocal of nl is linearly related to v0l. In

addition, the product of nl and the photon mean free path

1/s estimates the total photon path length:

L
l

5
n

l

s
5

1

s

1

1 2 pv0l

. (10)

Equation (10) shows the explicit dependence on p and

allows us to estimate Ll using explicit numerical models

like SBDART [or the spherical harmonics discrete or-

dinate method (SHDOM); Evans 1998] rather than sta-

tistical models like Monte Carlo.

Figure 5 shows spectral variations of nl and Wl. There

are two remarkable points here. First, in the spectral

interval 0.4–0.55 mm, nl increases from 17 to 23 for

a thick cloud (tC 5 10) but slowly decreases for a thin

one (tC 5 0.5). This behavior follows from the fact that

for thicker clouds v0l (Fig. 4b) decreases much more

slowly than Wl [see Fig. 5b and Eq. (10)], while for thin

clouds, because of absorbing aerosols, v0l decreases

faster than Wl. The recollision probability controls the

response rate of Wl to variation in v0l. The second re-

markable point about Fig. 5 is the negligible effect

of drop size except at wavelengths where liquid water

absorbs strongly. In the spectral interval 2.1–2.2 mm,

16-mm droplets have an average of 13 photon inter-

actions for tC 5 10, while for 4-mm (and therefore less

absorbing) droplets, nl goes up to 18. Finally, for the

strongly water vapor–absorbing spectral bands around

1.4 and 1.8 mm, Wl 5 0 and nl approaches 1.

Figure 6 plots points only for wavelengths for which

v0l . 0.8 (see Table 1); there are 67 (tC 5 0.5), 154 (tC 5

3.0), and 179 (tC 5 10.0) such wavelength intervals.

Figure 6a is similar to Fig. 5b. Figure 6b shows the ratio

Wl/v0l plotted against Wl, where the slope increases as

we go from aerosol- and molecular-dominated condi-

tions (tC 5 0.5) toward cloud-dominated conditions

(tC 5 3, 10). The linear fit is almost perfect for tC 5 10.

This confirms that SI holds for the cloud dominated

cases—that is,

W
l

-0l

5 aW
l

1 b (11a)

or

W
l

5
bv0l

1 2 av0l

. (11b)

Note that the sum of slopes a and intercepts b in Fig. 6b

is almost exactly equal to unity. In the zero-absorption

limit where the total v0l 5 1, Wl 5 1 and consequently

a 1 b 5 1 from Eq. (11a).

Note that Eq. (11b) coincides with Eq. (7) if a 5 p and

b 5 1 2 p. Thus Fig. 6b numerically confirms the validity

of Eq. (7). Finally, Eq. (11a) is equivalent to

TABLE 1. Variations in the total optical depth and scattering phase function asymmetry parameter corresponding to wavelengths for

which the single scattering albedo exceeds 0.8. The second row is for wavelengths between 0.7 and 2.5 mm. In the ‘‘x 6 y’’ notation in

columns 3 and 5, x and y stand for the mean and the standard deviation, respectively.

Cloud optical

depth

No. of wavelengths

from 0.4 to 2.5 mm

(out of total 210)

Total optical

depth

Std dev to mean ratio for

total optical depth (%)

Total asymmetry

parameter

Std dev to mean ratio

for total asymmetry

parameter (%)

0.5 97 0.72 6 0.12 17 0.79 6 0.07 9

0.5 67 0.65 6 0.05 8 0.83 6 0.02 2

3 154 3.34 6 0.16 5 0.85 6 0.02 2

5 166 5.44 6 0.24 4 0.86 6 0.01 1

10 179 10.66 6 0.44 4 0.86 6 0.01 1

TABLE 2. SBDART parameters.

Parameters Values used in model

Spectral

Lower wavelength limit 0.4 mm

Upper wavelength limit 2.5 mm

Spectral resolution 0.01 mm

Solar

Solar spectrum MODTRAN_3

Solar zenith angle 458

Atmosphere

Atmospheric profile Midlatitude summer

Integrated water vapor amount 3 cm

Integrated ozone concentration 0.324 atm-cm

Surface

Surface albedo 0

Cloud

Cloud-base altitude 1 km

Cloud optical depth at 0.55 mm 0.0, 0.5, 3, 5, 10

Cloud drop effective radius 4 and 16 mm

Cloud phase function Henyey–Greenstein

Aerosol

Aerosol type Rural

Aerosol optical depth at 0.55 mm 0.2

Aerosol phase function Henyey–Greenstein

Visibility at 0.55 mm 23 km

Relative humidity used in the

boundary layer aerosol model

80%
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W
l

v0,l

5 pW
l

1 (1 2 p). (12)

Based on Eq. (12) the following interpretation of the

linear relationship observed in Fig. 6b can be given. The

terms v0l and Wl quantify the scattering events result-

ing from one and multiple interactions, respectively.

Their ratio is the probability that a scattered photon will

escape the layer as a result of multiple interactions. Part

of the single scattered photons will escape without fur-

ther interactions with the probability (1 2 p), and the

rest with the probability pWl.

Interestingly, while both Wl and v0l depend on

droplet radius (at least for the 2.1–2.2-mm spectral

region, as seen in Fig. 5b), the slopes a (or p) are almost

independent of droplet radius. Hence, the increase in nl

for smaller droplets is due entirely to larger v0l, as fol-

lows from Eq. (9).

Finally, Fig. 7 shows the same kind of plot as in Fig.

6b, but for zenith and nadir radiances instead of Wl.

We see that (i) again, the behavior is very close to

linear, at least for the cloud-dominated cases; (ii) for

tC 5 10 the slopes for Wl and for the two radiances are

almost identical, while for the other cases the slopes are

different; and (iii) the sum of a and b is not necessarily

equal to 1.

In summary, for the cloud-dominated cases, both ra-

diance and fluxes show evidence of SI as predicted by

Eqs. (4) and (12).

FIG. 5. (a) Spectra of estimates of nl for clouds with tC 5 0.5, 3, and 10 (reff 5 4 and 16 mm);

tA, l50.55mm 5 0.2. Dashed horizontal line corresponds to one interaction. (b) Spectra of Wl for

the same cases as in (a).
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5. Accuracy of the spectrally invariant relationships

To address the question of accuracy in the SI rela-

tionships, we first introduce a more accurate wavelength-

selection method than the criterion v0l . 0.8 (Table 1)

used in section 3. This method will be applied to obtain

the slope and intercept. Second, we reconstruct the ra-

diance spectra using the single scattering albedo and SI

parameters and compare them with those calculated

with the SBDART code.

Solving Eq. (7) for p yields

p
l

5
v0l

2 W
l

v0l
(1 2 W

l
)
. (13)

Our goal is to find the spectral intervals for which vari-

ation in pl is small. Figure 8a shows variation in pl with

wavelength. The sharp peaks around the absorbing

bands are correlated with the total optical depth (cf.

Fig. 3). In the spectral interval between 0.4 and 0.55 mm,

pl increases for thick clouds (tC $ 3) and decreases for

a thin one (tC 5 0.5). For l $ 0.55 mm, pl becomes

relatively flat outside the absorbing bands. Figure 8b

shows the occurrences of the pl values from Fig. 8a while

Tables 3 and 4 summarize their statistics for wave-

lengths corresponding to the maxima in Fig. 8b. For

such wavelengths, the Wl/v0l versus Wl relationships

are more linear than the Il/v0l versus Il relationships

and their sums of slope and intercept are closer to unity.

The tables show that the statistics of frequency peaks is

only weakly sensitive to cloud drop size (as can be seen

also in Fig. 8b).

Equations (3) and (7) can be combined as

FIG. 6. (a) Spectra of Wl for clouds with tC 5 0.5, 3, and 10 (reff 5 16 mm); tA, l50.55mm 5 0.2.

Doglegs occur because only wavelengths for which v0l . 0.8 (see Table 1) are plotted.

(b) Ratio Wl/v0l is plotted against Wl for the wavelengths from (a). To reduce variability in tl

and gl (see Table 1), wavelengths less than 0.7 mm were not used for tC 5 0.5.
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I
l
(V)

1 2 Tdir

5 k(V)W
l
, (14a)

which, using Eq. (8a), is equivalent to

I
l
(V) 5 k(V)(R

l
1 T

l
2 Tdir), (14b)

where k(V) 5 r(V)/(1 2 p) maps the total diffuse out-

going flux into radiance [see Eq. (2)]. If the optical depth

and the scattering phase function are independent of

wavelength, the coefficient k does not depend on wave-

length either and varies with V (and the direction of

incident radiation V0). Its physical interpretation is sim-

ilar to the scattering phase function but formulated for

the entire layer (i.e., the fraction k of scattered photons

Wl leaves the layer in a given V). Figure 9 shows occur-

rence of k values for nadir radiance. Unlike p values, k

maxima become very sensitive to the drop sizes. If one

selects only wavelengths that correspond to the maxima

of both p and k, the differences in slopes between the

two cases (hemispherical and directional) will be much

smaller, as the theory predicts.

Figure 10a illustrates the improvement of the line-

arity in the Wl/v0l versus Wl relationships with rejec-

tion of wavelengths, where tl substantially fluctuates

(see Fig. 3a). In addition to our standard case of v0l .

0.8 with 179 wavelengths (Table 1), we also plotted the

v0l thresholds of 0.9 with 156 wavelengths. As expected,

the increased v0l threshold slightly improves the re-

gression coefficient and decreases the slope (thus in-

creasing the intercept).

The improved linearity makes the reconstruction of

Wl more accurate, especially for the shorter wavelengths

(Fig. 10b). However, further increase in the threshold

does not necessarily improve the accuracy. This is due to

the reduced information on cloud liquid water absorp-

tion by removing longer wavelengths (around 1.6 and,

especially, 2.1 mm). Figure 11 illustrates the RMS and

the bias

RMS 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
�
m

i51
(Wi,l 2 Wi,l,appr)

2

vuut
(15a)

bias 5
1

m
�
m

i51
Wi,l 2

1

m
�
m

i51
Wi, l,appr (15b)

for 10 approximations corresponding to the increased

v0l thresholds (m 5 211). We see that there are few

changes for the thresholds above v0l 5 0.97. This is be-

cause most of the cloud liquid water absorbing wave-

lengths around 2.1 mm have been removed and the range

of v0l has been substantially decreased. The best ap-

proximation is reached for the thresholds of 0.86 and

0.92–93 for the bias and the RMS, respectively. Note

that the threshold that gives the minimum RMS is very

close to the one that is based on the maximum p values

occurrence (see Table 4).

What is the optimal number of wavelengths needed to

obtain the recollision probability and what are those

wavelengths? To increase the dynamic range of v0 and

thus the corresponding range of the I/v0 versus I scat-

terplot, one needs to use wavelengths with the largest

range of cloud water absorption. In Fig. 12a we used

three wavelengths: 0.4 mm (total v0 5 0.999, t 5 10.57,

FIG. 7. As in Fig. 6b, but for (a) Il(V) in zenith (V 5 Y) direction

and (b) Il(V) in nadir (V 5 [) direction, where I is reflected ra-

diance.
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g 5 0.835), 1.6 mm (v0 5 0.982, t 5 10.46, g 5 0.861), and

2.1 mm (v0 5 0.948, t 5 10.66, g 5 0.866). The recon-

structed Wl for all wavelengths from 0.4 to 2.5 mm is

shown in Fig. 12b. The RMS 5 0.046 (;9% of the mean

value of Wl 5 0.53) and the bias 5 20.006. Note that

accuracy of the approximation is not very sensitive to

a selection of a particular wavelength in the neigh-

borhoods of 0.4, 1.6, and 2.1 mm. Finally, it seems

FIG. 8. (a) Spectra of pl for tC 5 0.5, 3, and 10; reff 5 16 mm. (b) Histograms of pl from (a) for

reff 5 4 and 16 mm with bin width 0.02.

TABLE 3. Statistics of the ‘‘pl peak’’ values from Fig. 8b for reff 5 4 mm. Bin size is 0.02. The cloud-free column (tC 5 0.0) is added for

comparison. ‘‘Var’’ indicates coefficient of variation (the ratio of the standard deviation to the mean).

Parameters

Cloud optical depth (droplet size reff 5 4 mm)

0.0 0.5 3.0 5.0 10.0

Bin 0.02–0.04 0.36–0.38 0.82–0.84 0.90–0.92 0.94–0.96

No. of points 27 37 59 71 115

Mean p 0.030 0.371 0.832 0.910 0.950

Var p (%) 17.0 1.4 0.7 0.6 0.6

Min v0l 0.163 0.722 0.873 0.884 0.937

Max v0l 0.655 0.963 0.998 0.998 0.999

Var v0l (%) 47.4 7.8 3.9 3.1 1.4

Min tl 0.072 0.630 3.22 5.27 10.32

Max tl 0.170 0.829 3.90 6.90 12.51

Var tl (%) 24.7 8.7 5.8 8.6 5.5

Correlation coefficient R2 of linear relationship 0.673 22 0.998 63 0.999 85 0.999 89 0.999 91
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counterintuitive that the case with only three selected

wavelengths (Fig. 12b) gives a better approximation than

the one that uses more than 100 wavelengths (Fig. 11).

However, the case with a large number of wavelengths is

biased toward the visible spectral interval at the expense

of near-infrared wavelengths. In addition, using a larger

number of wavelengths leads to more violations of the

assumptions stated in Eqs. (5a) and (5b). Thus more

wavelengths do not necessarily provide a better approx-

imation.

6. Possible applications

Guided by applications already being pursued in veg-

etation canopy radiative transfer (Ganguly et al. 2008;

Schull et al. 2011) we think the top applications are

(i) testing the consistency of remote sensing retrievals,

(ii) broadband calculations for climate models, (iii) fill-

ing missing spectral data, and (iv) testing 3D radiative

transfer codes. Below we briefly discuss all four.

a. Testing the consistency of remote sensing retrievals

Satellite remote sensing often provides particle ef-

fective radius reff at three liquid water absorbing wave-

lengths: 1.6, 2.1, and 3.7 mm. From reff one can calculate

the ‘‘effective’’ v0l for each wavelength. Now Eq. (4)

can be used to validate the physical consistency of the

retrieved reff values. Indeed, according to the SI theory,

the ratio of Il to v0l should be approximately linear in

Il. Lack of linearity may call into question the correct-

ness of retrievals.

b. Broadband calculations for climate models

For climate models it is assumed that if reff is known,

the total v0l can be calculated (or parameterized; see,

e.g., Slingo 1989) as a function of wavelength (or spectral

band). Using the assumptions of the SI approach, one

can calculate fluxes for only a few (at least, two or three)

wavelengths and obtain the two wavelength-independent

variables (a and b). Fluxes for all other wavelengths could

TABLE 4. As in Table 3, but for reff 5 16 mm. ‘‘Var’’ indicates coefficient of variation (the ratio of the standard deviation to the mean).

Parameters

Cloud optical depth (droplet size reff 5 16 mm)

0.0 0.5 3.0 5.0 10.0

Bin 0.02–0.04 0.36–0.38 0.82–0.84 0.90–0.92 0.94–0.96

No. of points 27 38 65 72 104

Mean p 0.030 0.367 0.832 0.909 0.950

Var p (%) 17.0 1.4 0.7 0.5 0.6

Min v0l 0.163 0.683 0.868 0.869 0.937

Max v0l 0.655 0.964 0.997 0.998 0.999

Var v0l (%) 47.4 10.9 3.7 3.6 1.5

Min tl 0.072 0.587 3.15 5.21 10.2

Max tl 0.170 0.818 3.16 5.95 11.0

Var tl (%) 24.7 10.3 3.8 2.9 1.5

R2 of linear relationship 0.673 22 0.998 94 0.999 86 0.999 91 0.999 91

FIG. 9. As in Fig. 8b, but for k values. The term k(V) 5 r(V)/(1 2 p) maps the total diffuse

outgoing flux into radiance. Also, p and r(V) are the recollision probability and the directional

escape probability, respectively [see Eq. (2)].
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be derived from these two variables and v0l. Thus for

estimating a broadband integral, a small number of ra-

diative transfer calculations may be sufficient if high

accuracy is not required. Note that Wl 5 1 2 Al has

been approximated as a function of all shortwave wave-

lengths from 0.4 to 2.5 mm using radiative transfer cal-

culations at only three wavelengths (see Fig. 12b) with a

bias of 0.006 out of 0.53 or 1.1%. However, if both the

broadband Rl and Tl are required, the biases will be

bigger.

c. Filling missing spectral data

When high temporal and spectral resolution radiance

measurements are provided by an aircraft spectrometer,

some spectral data may be lost because of saturation

or transmission problems (A. Vogelmann 2010, personal

communication). In this case, if the SI relationship is

established and the SI variables are found, the lost spec-

tral data can be reconstructed using Eq. (4).

d. Testing 3D radiative transfer codes

The best way to test a new numerical radiative

transfer model is to compare its results with a nontrivial

exact solution of the radiative transfer equation. Un-

fortunately, few such solutions are available, especially

for 3D radiative transfer. To compare different atmo-

spheric radiative transfer models, the Intercomparison

of 3D Radiation Codes (I3RC; see http://i3rc.gsfc.nasa.

gov and Cahalan et al. 2005) used some ‘‘consensus’’

results. To replace the unavailable ‘‘truth’’ for the Radi-

ation Transfer Model Intercomparison (RAMI) in veg-

etation, Pinty et al. (2001, 2004) introduced the ‘‘most

credible solution.’’ However, both intercomparisons of

radiation codes (I3RC and RAMI) mostly compared the

FIG. 10. (a) Relationships of Wl/v0l vs Wl for wavelengths such that v0l . 0.8 (179 values)

and v0l . 0.9 (156 values). Other parameters are tC 5 10, reff 516 mm, tA, l50.55mm 5 0.2.

(b) Reconstruction of Wl using Eq. (11b), where slopes and intercepts are from the linear

relationships in (a). All 211 wavelengths from 0.4 to 2.5 mm are retrieved.
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model results against each other. The SI theory suggests

a more robust physics-based approach for testing radi-

ative transfer codes. This approach states that the ratios

of the calculated radiative quantities (radiances and/or

fluxes) to the spectral single scattering albedo for three

or more wavelengths are expected to be approximately

linear in these radiative quantities.

Note that the direct application of the SI relationships

is limited only to cases with a purely absorbing surface.

However, the relationships are an important part of the

radiative transfer problem with general boundary con-

ditions (see the appendix). More studies are needed to

better understanding the limitations of applicability of

the SI relationships to real atmospheres.

7. Summary and discussion

The solution of the radiative transfer equation de-

pends on its boundary conditions (solar illumination

and surface reflectance) and on three (independent)

variables—optical depth tl, phase function Pl, and sin-

gle scattering albedo v0l. We assume that the functional

dependence of the solution of the radiative transfer

equation Il on ftl, Plg does not change with wave-

length while the wavelength dependence of Il comes

only from the v0l spectra. In this case, we can formally

write

I
l
(t

l
, P

l
v0l

) 5 I
l
(t, P; v0l

). (16)

Such a separation of variables is natural for radiative

transfer in leaf canopies where scattering centers are

much larger than the wavelength of solar radiation and

dependence on t and P is determined by canopy struc-

ture while dependence on v0l comes entirely from leaf

physiology.

For atmospheric radiative transfer this assumption is

not met, in general (see Figs. 3a,b and 4a), since the size

of scattering centers (air molecules, aerosol and cloud

particles) is comparable to (or smaller than) the wave-

length of solar radiation.

However, in cloudy atmospheres assumption (16) can

be met approximately for a large range of wavelengths.

This paper shows that, at least for tC $ 3 and wave-

lengths that exclude strong water vapor absorbing

spectral intervals, Eqs. (5a) and (5b) hold with variations

less than 5% (Table 1). Consequently, the linear spectral-

invariant relationships are valid (see Figs. 6b and 7a,b);

that is, the ratio of the radiative quantity (radiance or

flux) to the total single scattering albedo is a linear func-

tion of this quantity; its slope and intercept are wave-

length independent.

The slope of the linear function is an approximation

to the recollision probability—the probability that a

scattered photon will interact with the medium again.

The intercept of the linear function quantifies the escape

probability in a given direction. For hemispherically in-

tegrated fluxes [Eqs. (8a) and (8b)], the sum of the slope

and the intercept is equal to one [see Eqs. (7) and (12) and

Fig. 6b]; this is not necessarily true for radiances (Figs.

7a,b).

The ratio of the absorbed radiation to the single

scattering coalbedo estimates the number of interac-

tions; the reciprocal of the number of interactions is

linearly related to the single scattering albedo [Eq. (9)].

As a function of wavelength, the total photon path

length can be estimated [Eq. (10)] using explicit numer-

ical radiative transfer models such as SBDART for 1D

and SHDOM for 3D calculations.

The results presented in the paper can be directly

applied to simple radiative transfer calculations if the

same radiative quantity is required for different single

scattering albedos (see Figs. 2a,b). In brief, we were able

to single out one spectral variable—the single scattering

albedo—that determines spectral behavior. If the single

scattering albedo is known, it will help to fill spectral

gaps in the spectral observations. In addition, the pos-

sible applications of SI to climate and remote sensing

research are summarized in section 6.

If the spectral single scattering albedo is available, the

slope of the linear relationship can be obtained directly

from observations without any parameterizations and/or

radiative transfer calculations. The product of the slope

(the recollision probability) and the single scattering al-

bedo approximates the maximum eigenvalue of the ra-

diative transfer equation (see the appendix). As far as we

FIG. 11. RMS and bias [see Eq. (15) with n 5 211] of Wl for

different approximations based on v0l thresholds.
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are aware, this is the first method for estimating the

maximum eigenvalue directly from atmospheric mea-

surements.

The concept of collision and escape probabilities was

first introduced and developed in nuclear reactor physics

(Bell and Glasstone 1970, 115–125). The vegetation

community used this concept to interpret the SI re-

lationships observed in radiative measurements and

satellite data and to relate the wavelength-independent

recollision and escape probabilities to canopy structure.

In this paper the principles of SI have been applied to

atmospheric radiative transfer. This provides a bridge

between the methods developed in reactor physics, veg-

etation canopies, and cloudy atmospheres since all three

use the same radiative transfer equation.

Finally, recently Marshak et al. (2009) reported a

surprising SI relationship in shortwave spectrometer

observations taken by the Atmospheric Radiation

Measurement program (ARM). The relationship sug-

gests that the shortwave spectrum near cloud edges can

be determined by a linear combination of zenith radi-

ance spectra of the cloudy and clear regions. Chiu et al.

(2010) confirmed these findings with intensive radiative

transfer simulations of the different aerosols and clouds

properties as well as the underlying surface types, and

the finite field of view of the spectrometer. Although

their calculations are performed for 1D clouds, the first

3D radiative transfer results suggest that the SI relation-

ship discovered in shortwave spectrometer measure-

ments is valid for the 3D simulation world. However,

the slope and intercept depend on cloud structure and

may be different from their 1D counterparts. A clear

physical (and mathematical) understanding of the ob-

served and simulated SI behavior of zenith radiance

around cloud edges is still missing. The current paper is

the first step in this direction.

FIG. 12. (a) Relationships of Wl/v0l vs Wl for l 5 0.4, 1.6, and 2.1 mm. Other parameters are

tC 5 10, reff 5 16, tA, l50.55mm 5 0.2. (b) Reconstruction of Wl using Eq. (11a) or (7) with slope

(as p) and intercept (as 1 2 p) obtained from (a). Retrieved values for all 211 wavelengths from

0.4 to 2.5 mm are shown.
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APPENDIX

Eigenvalues of the Radiative Transfer Equation
and Spectral Invariance

a. Definition

An eigenvalue of the 3D radiative transfer equation is

a number g such that there exists a nontrivial function

e(x, V) that satisfies the equation

g[V � $e(x, V) 1 s(x)e(x, V)]

5

ð
4p

ss,l
(V9 / V)e(x, V9) dV9, (A1)

and zero boundary conditions. The 3D radiative transfer

equation has a discrete set of eigenvalues gk and ei-

genvectors ek(x, V), k 5 0, 1, 2, . . . . Under some general

conditions, the eigenvectors are mutually orthogonal.

Solution of the radiative transfer equation can be ex-

panded in eigenvectors. There is a positive eigenvalue

g0 that corresponds to a positive eigenvector e0(x, V).

The eigenvalue g0 is greater than the absolute magni-

tudes of the remaining eigenvalues. It means that this

eigenvalue and corresponding eigenvector dominates all

other eigenvalues and eigenvectors. The reciprocal of

the positive eigenvalue g0 describes the criticality con-

dition in reactor physics—that is, a relation between

1/g0 and the size of the assembly when more than one

neutron is emitted per collision (Bell and Glasstone

1970; Case and Zweifel 1967). Details of this theory can

be found in Vladimirov (1963) and Knyazikhin et al.

(2011).

The positive eigenvalue g0 and corresponding eigen-

vector e0 have the following interpretation. Equation

(A1) can be rewritten in terms of linear operators: dif-

ferential operator L [the square brackets of Eq. (A1)]

and integral operator S [the right-hand side of Eq. (A1)],

as g0Le0 5 Se0. Solving this equation for g0 yields g0 5

L21Se0/e0. The operator L21S inputs the source e0, sim-

ulates the scattering event S and the photon free path

L21, and outputs the distribution of photons just before

their next interaction. The ratio L21Se0/e0 therefore can

be treated as the probability that a scattered photon will

recollide.

b. Conditions for wavelength independency

In cloudy atmospheres, the scattering coefficient ss,l 5

v0lsP, where v0l and P are the single scattering albedo

and scattering phase function, respectively. The scat-

tering operator S takes the form S 5 v0lS0, where S0 is

determined by the extinction coefficient s and P. Equa-

tion (A1) can be rewritten as pLe 5 S0e, where p 5 g/v0l

is the probability that a scattered photon will recollide.

If the extinction coefficient and scattering phase function

do not depend on wavelength, L and S0 are wavelength

independent. As a result, the recollision probability be-

comes wavelength independent and does not depend on

the incoming radiation either.

c. Comments on Eq. (3)

The 3D radiative transfer equation with a nonreflecting

boundary can be transformed into the integral equation

I
l

5 v0l
T0I

l
1 Q, (A2)

where T0 5 L21S0; the source term Q describes the

distribution of uncollided radiation. The operator T0

has the same set of eigenvalues and eigenvectors as

Eq. (A1), i.e., gkek 5 v0lT0ek. If s does not depend on

wavelength, Q becomes wavelength independent. In

addition, if P does not vary with wavelength, T0 becomes

spectrally invariant. Solution of the radiative transfer

equation can be expanded in successive order of scat-

tering, which has a form of series similar to Eq. (3); that

is, the terms in series (3) are powers of T0 that are pro-

portional to rvm
0lpm21. More details on relationships

among T0, recollision, and escape probabilities as well as

their dependences on the scattering order m can be

found in Huang et al. (2007).

Note that the concept of spectral invariance is for-

mulated for a medium bounded by a nonreflecting sur-

face. The 3D radiative transfer problem with arbitrary

boundary conditions can be expressed as a superposition

of the solutions of some basic radiative transfer sub-

problems with purely absorbing boundaries (Davis and

Knyazikhin 2005) to which the spectral invariants are

applicable.

d. Number of interactions

The mean number of photon interactions Nl is an

important variable characterizing the effect of multiple

scattering on the atmosphere reflective and absorptive

properties. This is just the integral of sI over spatial and

angular variables; that is,
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N
l

5 kI
l
k 5

ð
4p

ð
V

s(x)I
l
(x, V) dx dV (A3)

over a domain V. Multiplying Eq. (A2) by s and inte-

grating over spatial and angular variables yields

N
l

5 v0l

kT0I
l
k

kI
l
k N

l
1 i0. (A4)

Here i0 5
Ð

4p

Ð
V s(x)Q(x, V) dx dV 5 1 2 Tdir, where

Tdir is the directly transmitted radiation (section 4).

Neglecting all terms in the expansion of the solution of

the radiative transfer equation in eigenvectors except

the dominant one e0, one gets kT0e0k/ke0k’ p. Substituting

it into Eq. (A4) and normalizing by i0, one obtains Eq.

(9), where nl 5 Nl/i0. Given Nl, the absorption can be

estimated as (1 2 v0l)Nl. More details can be found in

Panferov et al. (2001) and Knyazikhin et al. (2011).

e. Energy conservation law

Let Al and Sl 5 Rl 1 Tl 2 Tdir be fractions of pho-

tons from the incident beam that are absorbed and dif-

fusely scattered (reflected or transmitted) out by the

layer, respectively. The energy conservation law takes

the form (Smolander and Stenberg 2005)

A
l

1 R
l

1 T
l

5 A
l

1 S
l

1 Tdir 5 1. (A5)

The diffusely scattered radiation is then

S
l

5 (1 2 Tdir) 2 (1 2 v0l
)n

l
i0 5

(1 2 p)v0l

1 2 pv0l

i0.

(A6)

Equation (7) for the layer scattering Wl 5 Sl/i0 directly

follows from Eq. (A6). [Note that Al in Eq. (A5) and

A0l in Eq. (9) are different by a factor of i0.]
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