Case study of inhomogeneous cloud parameter retrieval from MODIS data

Céline Cornet,1 Jean-Claude Buriez,1 Jérôme Riédi,1 Harumi Isaka,2 and Bernard Guillemet2

Received 22 February 2005; revised 31 March 2005; accepted 18 May 2005; published 6 July 2005.

[1] Cloud parameter retrieval of inhomogeneous and fractional clouds is performed for a stratocumulus scene observed by MODIS at a solar zenith angle near 60°. The method is based on the use of neural network technique with multispectral and multiscale information. It allows to retrieve six cloud parameters, i.e. pixel means and standard deviations of optical thickness and effective radius, fractional cloud cover, and cloud top temperature. Retrieved cloud optical thickness and effective radius are compared to those retrieved with a classical method based on the homogeneous cloud assumption. Subpixel fractional cloud cover and optical thickness inhomogeneity are compared with their estimates obtained from 250m pixel observations; this comparison shows a fairly good agreement. The cloud top temperature appears also retrieved quite suitably. Citation: Cornet, C., J.-C. Buriez, J. Riédi, H. Isaka, and B. Guillemet (2005), Case study of inhomogeneous cloud parameter retrieval from MODIS data, Geophys. Res. Lett., 32, L13807, doi:10.1029/2005GL022791.

1. Introduction

[2] Satellite observation is the only possible way to obtain the main properties of clouds and their variability at the global scale. Current satellite retrieval of cloud properties is based on the plane-parallel homogeneous cloud assumption [Nakajima and Nakajima, 1995]; two cloud parameters, usually optical thickness and effective radius, are retrieved from visible and near-infrared measurements. However, the validity of the homogeneous cloud assumption has been frequently questioned [Loeb et al., 1997; Buriez et al., 2001]. This simplifying assumption may induce significant errors in the retrieved cloud parameters. A part of the errors is related to the plane-parallel bias which is due to the subpixel variability and varies significantly with the pixel size [Cahalan et al., 1994; Davis et al., 1997; Szczap et al., 2000]. Some studies [Davis et al., 1997; Marshak et al., 1998; Oreopoulos et al., 2000] also showed that the cloud inhomogeneity tends to smooth as well as to rough the radiation fields. In the context of cloud parameter retrieval, such effects may lead to either overestimate or underestimate the cloud properties.

[3] Different attempts have been made to retrieve optical thickness or effective radius accounted for cloud inhomogeneity effects [Marshak et al., 1998; Oreopoulos et al., 2000; Faure et al., 2002; Iwabuchi and Hayasaka, 2003] or to estimate errors in retrieved cloud optical thickness due to the homogeneous cloud assumption [Varnai and Marshak, 2001, 2002; Iwabuchi and Hayasaka, 2002]. Recently, Faure et al. [2001] and Cornet et al. [2004] have developed a method to retrieve cloud parameters characterizing fractional and inhomogeneous clouds. The method is based on the use of mapping neural network (MNN) to perform inversion of multispectral and multiscale observations provided by radometers such as Global Imager (GLI) and Moderate Resolution Imaging Spectroradiometer (MODIS). In this paper, we adapt the method to MODIS data and present first results obtained from real measurements.

2. MODIS Data

[4] We selected a marine stratocumulus scene of 200 × 200 km² off the west coast of the USA (Figure 1). The satellite overpass time is 19H45 UTC on 9 February 2003. The solar zenith angle is around 60°, the viewing zenith angle varies from 15° to 35° and the relative azimuth angle is around 120° corresponding rather to the backward direction. We used the MODIS radiances in the bands 2, 6, 7 and 30 (0.865, 1.64, 2.13 and 11.03 μm) for the cloud parameter retrieval, while the band 19 (0.940 μm) is used to remove water vapor absorption from the bands 2, 6 and 7. This removal is done by using regression coefficients between the ratio R0.865/R0.940 and the water vapor transmission obtained from line-by-line calculations. The solar bands are corrected for the absorption due to O3, CO2, CH4, and N2O assuming a mid-latitude winter profile and using the MODIS cloud top pressure product [Platnick et al., 2003]. For the thermal band, the atmospheric correction is not necessary if we replace the surface temperature by the observed clear-sky brightness temperature and the cloud top temperature by an equivalent cloud brightness temperature. In an operational algorithm, the right cloud top temperature can be calculated from this brightness temperature if the atmospheric profile above the cloud is known.

3. Retrieval of an Inhomogeneous and Fractional Cloud: MNN Method

3.1. Database Building

[5] We prepared the synthetic database for the neural network training as by Cornet et al. [2004]. The bounded cascade cloud model was used to generate different cloud fields of 128 × 128 elementary pixels of 50 × 50 m². The corresponding radiances fields (angular steps of 2.5° and 5° for zenithal and relative azimuthal angles) were computed with the Spherical Harmonics Discrete Ordinate Method [Evans, 1998]. We selected the same cloud scenes as by
3.2. Tests of the MNN Retrieval

[9] Before applying our retrieval procedure to real measurements, we tested it under different conditions. The first test is relative to the use of neural network for the cloud parameter retrieval. For this purpose, we trained especially MNNs to retrieve optical thickness and effective radius under the homogeneous cloud assumption from \((R_{0.865}, R_{2.13})\) radiance pairs. MNN retrieved values were compared with those of MODIS products [Platnick et al., 2003]. The correlation between them are good with correlation coefficients of 0.999 for \(\tau\) and 0.965 for \(Re\) respectively. However, the regression slopes are not exactly equal to unity, but close to 1.05 for \(\tau\) and 1.10 for \(Re\). These differences are probably due to some differences in radiative transfer modeling: in particular we assume a sea-surface directional reflectance instead of Lambertian one used for MODIS products. When a slight corrective factor to the MODIS products is applied to remove these biases, we obtain root mean square deviations (RMS) between modified MODIS and MNN, less than 5% of their corresponding means.

[10] For the second test, we retrieved the cloud parameters of a non-flat-top Gaussian cloud by using the MNNs trained with the non-flat-top bounded cascade clouds. The Gaussian process generates a synthetic cloud smoother than the bounded cascade leading to a cloud top variability less important. This two very different clouds allow us to test that neural networks are not too dependent on the cloud model used for their training. Table 1 shows that RMSEs and biases for each cloud parameter excepted for \(\sigma_{Re}\) are quite similar for both the types of clouds, which implies that the MNN retrieval is not too dependent on the cloud model assumption and therefore applicable to real data.

4. Inhomogeneous Cloud Parameters Retrieved From MODIS Data

[11] Our inhomogeneous cloud parameter retrieval algorithm was applied to the scene presented above; the “3D” denotes the cloud parameters retrieved with this method. The mean optical thickness \(\tau_{3D}\) and mean effective radius \(Re_{3D}\) are compared to the modified MODIS products (part 3.2) \(\tau_{ID}\) and \(Re_{ID}\) (Figure 2 and Table 2). Figure 2a shows that \(\tau_{ID}\) is larger than \(\tau_{3D}\) for most of the pixels, which implies a phenomenon of ‘overbrightness’, i.e. radiance larger than the plane-parallel one for a given optical thickness. This feature agrees with previous results showing that, when 1D theory is used, optical thickness is predominately

<table>
<thead>
<tr>
<th>(\tau)</th>
<th>(Re, \mu m)</th>
<th>(\sigma_e)</th>
<th>(\sigma_{Re}, \mu m)</th>
<th>(f)</th>
<th>(T_{c}, K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bounded Cascade Cloud</td>
<td>(0.01)</td>
<td>267 – 279</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau_{3.75})</td>
<td>0.18</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>−0.01</td>
</tr>
<tr>
<td>(\tau_{10.8})</td>
<td>1.04</td>
<td>0.12</td>
<td>0.08</td>
<td>0.32</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Table 1. RMSE Errors and Biases Obtained Between Retrieved and Initial Cloud Parameters for Two Types of Cloud Model: the Bounded Cascade Cloud and the Gaussian Cloud Models (\(\theta_0 = 57.5^\circ\) and \(58^\circ\); \(\theta_c = 15^\circ\); \(\varphi_0 = 125^\circ\)).
Figure 2. Comparison of cloud parameter retrieval at 1 km with the inhomogeneous cloud model (MNN method) and with the homogeneous cloud model (MODIS product). (a) Optical thickness; (b) effective radius.

instantly overestimated for oblique solar incidence [Varnai and Marshak, 2002; Iwabuchi and Hayasaka, 2002]. Moreover, the difference between τ_{1D} and τ_{3D} seems to increase with the optical thickness, which is consistent with illuminating effects that are higher for brighter radiances [Loeb et al., 1997; Varnai and Marshak, 2001]. On the contrary, in the case of fractional cloud cover \(f < 0.9 \), \(\tau_{1D} \) is slightly smaller than \(\tau_{3D} \) (bias \(\sim -0.05 \)) possibly because of shadowing effects and/or plane-parallel bias.

[12] For effective radius (Figure 2b), the results are presented by separating them into three groups: the first group is composed of pixels with \(f < 0.9 \); the two other groups corresponding to \(f \geq 0.9 \) are separated following the sign of \(\tau_{1D} - \tau_{3D} \). If we assume that optical thickness and effective radius are affected in the same manner by shadowing and illuminating effects, we can use this difference to characterize the difference between MNN and MODIS effective radius.

[13] According to Platnick et al. [2003], \(R_{e1D} \) appears often larger than \(R_{e3D} \) for fractional cloud cases. Figure 2b shows that for \(f < 0.9 \) the retrieved \(R_{e1D} \) is effectively larger than \(R_{e3D} \) and exhibits larger dispersion; it seems thus that MNN method deals better subpixel fractional cloud cover. For the second group (\(\tau_{3D} \geq \tau_{1D} \)), which should correspond to shadowing effect or plane-parallel bias, \(R_{e1D} \) is effectively larger than \(R_{e3D} \) for almost pixels. Since shadowing effects or plane-parallel bias relative to optical thickness make near infrared radiances apparently smaller, \(R_{e1D} \) appears larger than \(R_{e3D} \) as if there were larger absorption [Szczap et al., 2000]. For the third group (\(\tau_{3D} < \tau_{1D} \)) corresponding rather to illuminating area, \(R_{e1D} \) is smaller than \(R_{e3D} \) for most of the pixels. This behavior can be explained by illuminating effects which make near-infrared radiances brighter.

[14] We analyzed the correlation between \(\tau_{3D} \) and \(R_{e3D} \) (not shown). The correlation is positive for \(\tau_{3D} < 15 \) and negative for \(\tau_{3D} > 15 \). This behavior agrees with earlier observations [Nakajima and Nakajima, 1995]. Lohmann et al. [2000] also suggested that such change of sign in \(\tau \)-Re correlation can correspond to the transition from non-precipitating to precipitating clouds. These two types of correlations also correspond to two different types of cloud appearance in Figure 1, i.e. the area with fractional cloud cover and the upper and lower right corners where clouds appear more compact and developed. However, it has to be considered carefully because for the group \(\tau_{3D} > 15 \), some MODIS input components, in particular the standard deviation of visible radiances, are slightly outside of the data range covered by the training database.

[15] With regard to the optical thickness inhomogeneity \(\sigma_t \) and fractional cloud cover \(f \), we compared our results with two equivalent parameters computed from the 250 m-visible radiance field. For \(\sigma_t \), we compared the relative standard deviation \(\sigma_t / \tau_{3D} \) to the relative standard deviation of radiances. To estimate an equivalent fractional cloud cover, we used a threshold, \(\sqrt{R_{min} + (R_{max} - R_{min})/5} \), derived from extreme reflectance values of the scene, to classify pixels as cloudy or clear. These estimations are relevant only if we have enough pixels to compute it. Accordingly, we retrieved these cloud parameters at 4 km scale. The input vector components are the (4 km)² averaged radiances and the standard deviation of \(R_{256} \) estimated from 1 km² pixels. Figure 3 shows that the two correlation coefficients are high and the RMS difference for \(f \) is only 0.06. These two parameters appear thus well retrieved at 4 km scale and we can expect that it is also correct at 1 km scale.

[16] Figure 4 presents two probability distributions of the cloud top temperature. The first distribution obtained under the homogeneous assumption exhibits two marked modes at 273.5K and 277K. The homogeneous retrieval is based on the assumption of opaque cloud. However, for fractional cloud cover or thin cloud, there is a positive bias due to the surface temperature (here, \(T_s = 286K \) [Platnick et al., 2003]. For inhomogeneous clouds with fractional cloud cover, cloud top height should not vary from one cloud to the others and the equivalent cloud top temperature appears more uniform over the cloud scene. The temperature for inhomogeneous clouds is slightly lower than the MODIS one because, for this case study, we did not remove the atmospheric constituent effects whereas it is done for the MODIS temperature.

[17] We do not have any way to verify the consistency of the effective radius inhomogeneity. We analyzed the corre-

Table 2. Root Mean Square Differences and Biases (1D Minus 3D Retrieval)*

<table>
<thead>
<tr>
<th></th>
<th>RMSE ((\tau))</th>
<th>RMSE ((\tau_1D - \tau_3D))</th>
<th>(\tau_1D - \tau_3D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>3.49 (28%)</td>
<td>3.27 (28%)</td>
<td>-0.43</td>
</tr>
<tr>
<td>(f < 0.9)</td>
<td>1.42 (54%)</td>
<td>-1.05 (38%)</td>
<td>+2.78</td>
</tr>
<tr>
<td>(f \geq 0.9)</td>
<td>3.73 (27%)</td>
<td>3.09 (25%)</td>
<td>-0.98</td>
</tr>
<tr>
<td>& (\tau_3D < \tau_1D)</td>
<td>3.43 (28%)</td>
<td>-1.66 (25%)</td>
<td></td>
</tr>
<tr>
<td>& (\tau_3D > \tau_1D)</td>
<td>1.76 (16%)</td>
<td>+1.01 (16%)</td>
<td></td>
</tr>
</tbody>
</table>

*The relative RMS differences are reported in parentheses. The results are separated following the different groups of Figure 2.

Figure 3. (a) \(\sigma_t \) and (b) \(f \) retrieved at 4 km scale compared to an estimation of these two parameters calculated from the 250 m-visible radiances.

