The MUliple SCattering in Lidar Experiments (MUSCLE) Intercomparison Exercises, and Other I3RC Considerations

Anthony B. Davis
Los Alamos National Laboratory
Space & Remote Sensing Sciences Group (ISR-2)
Topics

• MUSCLE
 – what is it?
 – intercomparisons

• Intercomparison overview
 – with a gap to fill?

• 3D RT: Focus on the big-picture
 – where we are, and
 – where to go
MUSCLE

• Origins - 1995, ending with …
 – Lidar-In-space Technology Experiment (LITE) on Space Shuttle in Fall 1994, esp. night orbit #135
 – Applied Optics B Special Issue (5+1 papers)

• 1996 - 2005 period:
 – Quebec City
 – Jerusalem
 – Florence
 – Williamsburg
 – Oberpfaffenhoffen (near München)
 – St. Petersburg
 – Quebec City

• Next?
Bruscaglioni, P.; Ismaelli, A.; Zaccanti, G.,
Monte-Carlo calculations of LIDAR returns: Procedure and results,
Applied Physics B: Lasers and Optics,

Flesia, C.; Schwendimann, P.,
Analytical multiple-scattering extension of the Mie theory: The LIDAR equation,
Applied Physics B: Lasers and Optics,

Starkov, A.V.; Noormohammadian, M.; Oppel, U.G.,
Stochastic model and a variance-reduction Monte-Carlo method for the calculation of light transport,
Applied Physics B: Lasers and Optics,

Winker, D.M.; Poole, L.R.,
Monte-Carlo calculations of cloud returns for ground-based and space-based LIDARS,
Applied Physics B: Lasers and Optics,

Zege, E.P.; Katsev, I.L.; Polonsky, I.N.,
Analytical solution to LIDAR return signals from clouds with regard to multiple scattering,
Applied Physics B: Lasers and Optics,
Volume 60, Issue 4, April 1995, Pages 345-353.

Bissonnette, L.R.; Bruscaglioni, P.; Ismaelli, A.; Zaccanti, G.; Cohen, A.;
Benayahu, Y.; Kleiman, M.; Egert, S.; Flesia, C.; Schwendimann, P.; et al.,
LIDAR multiple scattering from clouds,
Applied Physics B: Lasers and Optics,
Bruscaglioni, P.; Ismaelli, A.; Zaccanti, G.,
Monte-Carlo calculations of LIDAR returns: Procedure and results,
Applied Physics B: Lasers and Optics,

Flesia, C.; Schwendimann, P.,
Analytical multiple-scattering extension of the Mie theory: The LIDAR equation,
Applied Physics B: Lasers and Optics,

Starkov, A.V.; Noormohammadian, M.; Oppel, U.G.,
Stochastic model and a variance-reduction Monte-Carlo method for the calculation of light transport,
Applied Physics B: Lasers and Optics,

Winker, D.M.; Poole, L.R.,
Monte-Carlo calculations of cloud returns for ground-based and space-based LIDARS,
Applied Physics B: Lasers and Optics,

Zege, E.P.; Katsev, I.L.; Polonsky, I.N.,
Analytical solution to LIDAR return signals from clouds with regard to multiple scattering,
Applied Physics B: Lasers and Optics,
Volume 60, Issue 4, April 1995, Pages 345-353.

Bissonnette, L.R.; Bruscaglioni, P.; Ismaelli, A.; Zaccanti, G.; Cohen, A.;
Benayahu, Y.; Kleiman, M.; Egert, S.; Flesia, C.; Schwendimann, P.; et al.,
LIDAR multiple scattering from clouds,
Applied Physics B: Lasers and Optics,
MUSCLE Comparison Plots
3D RT Comparisons, Compared

- I3RC (deterministic, computational)
- ICRCCM - III (statistical, modeling)
- RAMI (vegetation canopies)
- MUSCLE (localized/pulsed sources)
3D RT Comparisons, Compared

- I3RC (deterministic, computational)
- ICRCCM - III (statistical, modeling)
- RAMI (vegetation canopies)
- MUSCLE (localized/pulsed sources)
3D RT Comparisons, Compared

• I3RC (deterministic, computational)
• ICRCCM - III (statistical, modeling)
• RAMI (vegetation canopies)
• MUSCLE (localized/pulsed sources)
• Non-vegetated surfaces?
 – DIRSIG (Rochester)
 – McSCENE (Spectral Sciences, Inc.)
 – Something with radiosity
 – Etc.
3D RT Comparisons, Compared

- I3RC (deterministic, computational)
- ICRCCM - III (statistical, modeling)
- MUSCLE (localized/pulsed sources)
- RAMI (vegetation canopies)
- **Non-vegetated surfaces?**
 - DIRSIG (Rochester)
 - McSCENE (Spectral Sciences, Inc.)
 - Something with radiosity
 - Etc.
Focus on the Big 3D RT Picture
3D RT Problem Classification

<table>
<thead>
<tr>
<th>$I(x, \vec{\Omega})$</th>
<th>Diagnostics use radiances [sample Ω]</th>
<th>Energetics use fluxes [sum over Ω]</th>
</tr>
</thead>
<tbody>
<tr>
<td>"pixel" scales:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>structure resolved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[sample x]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"domain" scales:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>structure unresolved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[sum over x]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3D RT Problem Classification

<table>
<thead>
<tr>
<th></th>
<th>Diagnostics</th>
<th>Energetics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>use fluxes [sum over Ω]</td>
</tr>
<tr>
<td>$I(x, \vec{\Omega})$</td>
<td>use radiances [sample Ω]</td>
<td></td>
</tr>
<tr>
<td>“pixel” scales:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>structure resolved [sample x]</td>
<td>Adjacency problems</td>
<td></td>
</tr>
<tr>
<td>“domain” scales:</td>
<td></td>
<td>GCM radiation parameterization problem</td>
</tr>
<tr>
<td>structure unresolved [sum over x]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3D RT Problem Classification

<table>
<thead>
<tr>
<th>$I(x, \vec{\Omega})$</th>
<th>Diagnostics use radiances [sample Ω]</th>
<th>Energetics use fluxes [sum over Ω]</th>
</tr>
</thead>
<tbody>
<tr>
<td>“pixel” scales:</td>
<td>Adjacency problems</td>
<td>3D radiative heating/cooling rates in CRMs</td>
</tr>
<tr>
<td>structure resolved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[sample x]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“domain” scales:</td>
<td>Large-footprint problems</td>
<td>GCM radiation parameterization problem</td>
</tr>
<tr>
<td>structure unresolved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[sum over x]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3D RT Problem Classification

<table>
<thead>
<tr>
<th>$I(x, \vec{\Omega})$</th>
<th>Diagnostics use radiances [sample Ω]</th>
<th>Energetics use fluxes [sum over Ω]</th>
</tr>
</thead>
<tbody>
<tr>
<td>“pixel” scales:</td>
<td>Adjacency problems</td>
<td>3D radiative heating/cooling rates in CRMs</td>
</tr>
<tr>
<td>structure resolved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[sample x]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“domain” scales:</td>
<td>Large-footprint problems</td>
<td>GCM radiation parameterization problem</td>
</tr>
<tr>
<td>structure unresolved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[sum over x]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 1D
- 2D
3D RT Problem Classification

<table>
<thead>
<tr>
<th>$I(x, \vec{\Omega})$</th>
<th>Diagnostics use radiances [sample Ω]</th>
<th>Energetics use fluxes [sum over Ω]</th>
</tr>
</thead>
<tbody>
<tr>
<td>“pixel” scales:</td>
<td>Adjacency problems</td>
<td>3D radiative heating/cooling rates in CRMs</td>
</tr>
<tr>
<td>structure resolved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[sample x]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“domain” scales:</td>
<td>Large-footprint problems</td>
<td>GCM radiation parameterization problem</td>
</tr>
<tr>
<td>structure unresolved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[sum over x]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Atmospheric 3D RT Evolution

1975 - 1995 (and beyond):
3D damage assessment for 1D RT modeling
i.e., uncertainty quantification

Since 1995:
→ damage mitigation (back to 1D, w/o bias)
→ innovation (exploit 3D RT phenomena)
3D Damage Mitigation

- Effective optical depth (e.g., Cahalan 1994)
- Gamma-Weighted 2-Stream (Barker 1996)
- Rescaled optical properties (Cairns et al. 2000)
- Effective optical properties (Szczap et al. ≈2002)
- Nonlocal Independent Pixel Approximation - NIPA (Marshak et al. 1998)
- Etc.
Innovation

• In energetics, this calls for new equations to solve:
 – Markovian stochastic media;
 – Stephens’ (1998b) closure scheme;
 – Power-law propagation kernels, formerly known as Lévy/anomalous photon diffusion model.

• In diagnostics, this means going beyond improved or adapted sampling of photon state-space (wavelength, position/direction, maybe polarization). Uses 3D photon flow patterns and/or population properties.
Innovation, continued:
Examples in Remote Sensing

- Exploitation of radiative smoothing in R or in T
- Normalized Difference Cloud Index - NDCI
- “Bright/Dark” radiance ratio technique for dense compact clouds
- Pathlength moments from O$_2$ A-band spectroscopy at fine or ultra-fine resolution
- Large-footprint cloud lidar
 - LITE
 - “in situ” cloud lidar (not “remote” per say)
- Off-beam cloud lidar w/ space- and time-resolution
 - WAIL (at LANL) & THOR (at NASA-Goddard)
“Take Home” Messages

• Verification and Validation (V&V)
 – “solve the equations right”
 – “solve the right equations”

 (Roache ≈2000)

• Work with others …
 – Atmosphere - Ocean - Land - Planetary
 • Modelers
 • Observers
 – Need more/better approximation techniques
 – Outreach & teaching

• Dream up new observations
 – New synergies
 – New instruments