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A new Monte Carlo atmospheric radiative transfer model is presented which is designed

to support the interpretation of UV/vis/near-IR spectroscopic measurements of scattered

Sun light in the atmosphere. The integro differential equation describing the underlying

transport process and its formal solution are discussed. A stochastic approach to solve

the differential equation, the Monte Carlo method, is deduced and its application to the

formal solution is demonstrated. It is shown how model photon trajectories of the

resulting ray tracing algorithm are used to estimate functionals of the radiation field such

as radiances, actinic fluxes and light path integrals. In addition, Jacobians of the former

quantities with respect to optical parameters of the atmosphere are analyzed. Model

output quantities are validated against measurements, by self-consistency tests and

through inter comparisons with other radiative transfer models.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Radiative transfer modeling (RTM) is the numerical pre-
diction of quantities related to the radiative energy transfer in
a medium such as the Earth’s atmosphere. Examples of these
quantities are irradiances, radiances, radiative heating rates
and actinic fluxes the latter needed for photochemical
modeling. Certain light path integrals, e.g. of the trace gas
number density are also often needed in remote sensing
applications. Particularly in the interpretation of spectral
radiances measured by passive remote sensing instruments,
RTM plays a key role. In the early years, many of the numerical
methods applied to simulate the transport of electromagnetic
radiation were developed in the context of neutron transport
ll rights reserved.
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modeling. Amongst other algorithms such as the discrete
ordinate methods ([1,2] and later [3,4]), the Monte Carlo
method developed by Metropolis and Ulam [5] and later
applied to problems of atmospheric radiation by Marchuk
et al. [6] has established itself as an unbiased and possibly as
the most flexible method (e.g. [7–13]. For a review on various
RT models see [14]).

This paper introduces the radiative transfer program
McArtim (Monte Carlo atmospheric radiative transfer inver-
sion model) that has been developed in order to support the
interpretation of spectroscopic data gained in remote sensing
applications. McArtim is the successor of the RTM TRACY-II of
which some features were already validated by Wagner et al.
[15]. TRACY-II is a reimplementation merely following the
ideas of TRACY-I [16]. Although McArtim contains parts of the
code of TRACY-II, McArtim is in many ways a new imple-
mentation and uses a somewhat different approach.

Specifically, in order to reconstruct the state of the
atmosphere, e.g. to retrieve profiles of trace gas number
densities or aerosol extinction coefficients, McArtim predicts
Carlo atmospheric radiative transfer model McArtim:
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the outcome of spectroscopic measurements given a certain
state vector. Hence, McArtim is a forward model in the
context of mathematical inversion. Quantities of particular
interest for inversion are Jacobians of the measured quantities
(radiances and light path integrals) with respect to the state
vector that is retrieved, and also the radiometric quantities
themselves. Recent publications address this topic by means
of, e.g., retrieving trace gas concentration profiles using the
optical properties of the aerosols present in the atmosphere
as constraints [17,18].

For UV/vis/near-IR applications, a well known spectro-
scopic analysis technique is the differential optical absorp-
tion spectroscopy (DOAS) method [19–22]. DOAS can be
used to infer light path integrals of trace gas number
densities (so-called slant column densities or SCDs) from
the ratio of measured spectra versus a background spec-
trum. Spatial distributions of trace gas concentrations can
be obtained from a set of SCDs measured from a moving
platform and/or in different viewing directions (see e.g.
[18,23–25]). By additionally measuring the absorption of
species with known atmospheric concentrations such as O2

or the oxygen collisional dimer O4, optical properties of the
atmosphere and its constituents like clouds and aerosols,
such as photon path length distributions [26–28] and
profiles of boundary layer aerosols can be inferred
[29–33]. Another promising extension in the remote sen-
sing of aerosols in combination with RTM is to detect the
degree of polarization of the scattered light (see [34–36]).

The purpose of the present study is to describe and to
report on the major features of McArtim and to discuss
validation exercises performed with observations and RT
modeling of test cases of the I3RC (Inter comparison of 3D
Radiation Codes) workshop [37]. The I3RC provides a
benchmarking framework for 3D radiation codes. The
knowledge gained throughout the I3RC workshop has been
Table 1
Terms, abbreviations and symbols used in the paper.

Symbol Meaning

VRTE, RTE (SRTE) Vector, scalar radiative

DOAS Differential optical abso
~r , ~o Location, direction

sxðlÞ, nxð~r Þ Cross section, number d

e, ea(b), es Extinction, absorption a

$0 Single scattering albedo

m¼ ~o1~o2 ¼ cosðy12Þ Cosine of angle betwee

Pð~r ,mÞ Phase function

Ið~r ,~oÞ, BðT ,lÞ Radiance, Planck functi

Sð~r Þ, f ð~r ,~oÞ, Cð~r ,~oÞ Photon source, collision

P0ðlÞ Spectral emissivity pow

kðyÞp ½ð~r ,~oÞ-ð’Þð~r u,~o uÞ�
(Adjoint) transition den

K ðyÞ (Adjoint) transition den

Ort Operator replacing the

SZA, SRAA Solar zenith, relative az

ZA, VA Zenith, viewing azimut

RRS Rotational Raman scatt

CDF, PDF Cumulative, probability

T, p Temperature, pressure

FOV, LOS Field of view, line of sig

MFP, FPL Mean free path, free pa

Please cite this article as: Deutschmann T, et al. The Monte
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put together into a 3D radiation code available to the public
[38]. Furthermore the paper aims at presenting theory and
implementation of a scalar Monte Carlo RTM in a more
compact form than already available. For example in the
pioneering work [6] an explicit expression for the initial
collision density was not given. In the book of Marshak and
Davis [11], its derivation is fragmented over large text parts
and also differs from Marchuk’s definition. Additionally,
the paper discusses two to some extent novel aspects that
have not been presented in the literature in detail: ray
tracing on spherical three dimensional grids and the
aforementioned radiance and Jacobians light path integral
obtained through Monte Carlo RTM.

The paper is organized as follows: Section 2 introduces
the underlying physics in form of the integro differential
equation for radiative transfer (RTE) and discusses the
boundary conditions (i.e. the sources of electro-magnetic
radiation). An integral form, the IRTE, is deduced and solved
using a Neumann series. The Neumann series deduced in the
paper represents the solution of the RTE in terms of the
collision density and is the basis of the Monte Carlo
methods. The collision density is the product of the
radiance at a certain location and in a certain direction
with the local extinction coefficient. Estimates of the
Neumann series are obtained by randomly sampling light
paths (or path generation, see Section 3) e.g. occurring
during a spectroscopic radiance measurement. Further
Jacobians of functionals of the RTE solution are calculated
from a trajectory ensemble by applying the method of
dependent sampling (Section 4). Section 5 reports on
validation exercises based on synthetic observations,
balloon borne measurements of relative radiances and
I3RC examples.

Table 1 shows a glossary of frequently used terms and
symbols in the paper.
Unit

transfer equation –

rption spectroscopy
~km ,1

ensity of constituent x cm2, cm�3

nd scattering coefficient km�1

1

n ~o1 and ~o2 1

sr�1

on W/m2 sr mm

, initial collision density W/m3 sr mm

er W=mm

sity km�1

sity operator 1

right side of the IRTE 1

imuth angle deg

h angle deg

ering –

density function 1, dep.

K, hPa

ht –

th length km

Carlo atmospheric radiative transfer model McArtim:
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2. The monochromatic unpolarized (scalar) equation of
radiation transfer

The vector RTE (VRTE) fully describing the polarized
electromagnetic field in a medium can be derived from the
Maxwell equations (e.g., [39,40] and [41, Section 8.11]. In
its scalar approximation, which is obtained by replacing
the vectors and matrices by their first, respectively, (1,1)
elements, the RTE rather describes the propagation of non-
interfering single velocity particles and neglects especially
the polarization of the EM field. Accordingly it is not
surprising that when comparing measurements of the
physical characteristics of the radiation field (here the
specific polarized radiance) to predictions from a scalar
RTM, differences of the order of up to 10% can be found for
purely Rayleigh scattering atmospheres [42]. However, for
many atmospheric conditions, especially in the presence of
cloud or aerosol particles, these deviations are small and
the scalar approach is accurate.

Over the past decades a certain terminology has been
established in the field of scalar radiative transfer model-
ing. The 2009 paper of Mishchenko [43] analyzes the
problematic vocabulary and gives recommendations on
how to avoid conflicts with fundamental physical princi-
ples. Bearing the assumptions of the scalar approach in
mind, we will use terms and expressions that developed in
the context of Monte Carlo radiative transfer modeling
implying the aforementioned corpuscle character of the
model photons. It has to be emphasized that the methods
used as, for instance, the decomposition of the radiation
field into orders of scattering, the probabilistic description
of the transport process as well as the terms like ‘‘photon
trajectory’’ have a purely mathematical origin in the
context of Monte Carlo RT modeling. With respect to the
largest simplification made, the neglect of polarization, it
has to be emphasized that the resulting trajectory ensem-
bles can be used nevertheless to obtain the polarized EM
fields by retrospectively considering the vector nature of
the RT process. This has recently been demonstrated by
Cornet et al. [35] and Emde et al. [36].

The monochromatic scalar radiative transfer equation,
which describes the gradient of the radiance Ið~r ,~oÞ at the
position ~r in the direction ~o is given by

~o~rIð~r ,~oÞ ¼

�eð~rÞIð~r ,~oÞþesð~rÞ

4p

Z
4p

Ið~r ,~ouÞPð~r ,~o � ~ouÞ d~ouþSð~rÞ: ð1Þ

The first term on the right side describes the differential
attenuation of light by extinction with the coefficient eð~rÞ.
In the scalar approximation, it is assumed that the extinc-
tion coefficient is isotropic and homogeneous. Note that in
general, the isotropy is violated since, for instance, falling
rain drops or ice particles tend to be oriented resulting in a
direction dependency of their optical parameters. The
second term collects the scattered radiance at~r by integra-
tion over all directions, where esð~rÞ denotes the scattering
coefficient and Pð~r ,mÞ is the effective phase function of the
medium at the location~r evaluated with the cosine of the
scatter anglem¼ cosðWÞ. 4p in the denominator of the factor
results from the normalization of the phase function. Again,
Please cite this article as: Deutschmann T, et al. The Monte
Introduction and validation of Jacobians and 3D features. JQSR
in the scalar approach the phase functions are assumed to
be independent on the particle orientation. The last term
Sð~rÞ in Eq. (1) is the so-called source density,

Sð~rÞ ¼ eað~rÞBT ð~r ,lÞþP0ðlÞYSunð~rÞþSsf ð~r ,lÞ: ð2Þ

Sð~rÞ is given by the density of thermally emitted radiation
BT ð~r ,lÞ of the Earth’s atmosphere with local absorption
(emission) coefficient eað~rÞ, the Earth’s thermal surface
emission Ssf and the Sun, where P0ðlÞ is the spectral power
of the Sun at its surface and

YSunð~rÞ ¼

3

4pR3
Sun

if ~r is located in the Sun,

0 else:

8><
>: ð3Þ

For sake of completeness it has to be mentioned that the RTE
in form of Eq. (1) does not account for inelastic scattering
processes (e.g. rotational Raman scattering). A detailed
treatment of rotational Raman scattering especially regarding
the Ring effect is presented in Vountas et al. [44].

2.1. RTE integral form

In the form given in Eq. (1), the RTE also contains the
boundary conditions (BC, in S). Usually, in order to solve a
differential equation (DE), the BCs are applied to the
general solution of the homogeneous DE so as to define
the integration constants. When including the BCs into the
DE, the general solution of the inhomogeneous DE is
directly obtained by applying Green’s function of the
homogeneous differential operator to the boundary con-
ditions. A general discussion of this technique can be found
in e.g. [45]. The method of Green’s function was first
applied by Marchuk [6] using results from Vladimirov
[46]. Here we discuss the derivation of all important
equations related to this issue.

Eq. (1) is rearranged in order to obtain the integral form:

1þ
1

eð~rÞ
~o~r

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼ :D

Ið~r ,~oÞ ¼$0ð~rÞ

4p

Z
4p

Ið~r ,~ouÞPð~r ,~o � ~ouÞd~ouþ
1

eð~rÞ
Sð~rÞ:

ð4Þ

The total single scattering albedo $0ð~rÞ in the equation
above is the ratio of scattering and extinction coefficient
$0ð~rÞ ¼ esð~rÞ=eð~rÞ. Single scattering albedos usually depend
on the orientation of the particles. As before for phase
functions and scattering coefficients we assume isotropy.
Green’s function G~o ð~r ,~r uÞ of the operator D can be obtained
by considering equation Eq. (4) for points located on a line
along the direction ~o through ~r u. It writes (compare to
Marshak and Davis [11, p. 214]):

G~o ð~r ,~r uÞ ¼ d~r ð~r u,~oÞ
eð~r uÞexpð�tð~r ,~r uÞÞ

j~r�~r uj2
: ð5Þ

In Eq. (5) above the d function

d~r ð~r u,~oÞ ¼ d ~o�
~r�~r u

j~r�~r uj

� �
: ð6Þ

Selects only points~r on the line~r uþt~o with t40. The r�2

dependency is needed to compensate for factors occurring
in a spatial integration with G~o as a kernel. The remaining
Carlo atmospheric radiative transfer model McArtim:
T (2011), doi:10.1016/j.jqsrt.2010.12.009
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factor can be identified as a density of extinction events
along the line ~r uþt~o, where the optical thickness t of
extinction is defined as

tð~r ,~r uÞ ¼

Z j~r�~r uj
0

eð~r uþt~oÞ dt: ð7Þ

By convoluting both sides of Eq. (4) with G~o and subse-
quently scaling with eð~rÞ, the integral form of the RTE, the
IRTE, in terms of the collision density, i.e. the product of the
radiance with the extinction coefficient, is obtained:

f ð~r ,~oÞ :¼ eð~rÞIð~r ,~oÞ

¼

Z
M

Z
4p
d~r ð~r u,~oÞ

kp½ð~r u,~ouÞ-ð~r ,~oÞ�
j~r�~r uj2

f ð~r u,~ouÞ d~ou d~r u

þCð~r ,~oÞ: ð8Þ

Here the transition density is given by

kp½ð~r u,~ouÞ-ð~r ,~oÞ�

¼$0ð~r uÞ
Pð~r u,~o � ~ouÞ

4p eð~rÞexpð�tð~r ,~r uÞÞ ð9Þ

and the initial collision density Cð~r ,~oÞ is given by

Cð~r ,~oÞ ¼ eð~rÞ
Z

M
d~r ð~r u,~oÞSð~r uÞ

expð�tð~r ,~r uÞÞ

j~r�~r uj2
d~r u: ð10Þ

The transition density kp in Eq. (9) plays a crucial role in the
Monte Carlo ray tracing method described in this paper. It can
be interpreted as the probability of a model photon to
perform the transition ð~r u,~ouÞ-ð~r ,~oÞ through an ‘‘atomistic’’
transport process including (a) a scatter event with single
scattering albedo $0 (probability of a model photon to
survive an extinction event) and a phase function P (a density
of cosines of scatter angles) and (b) a PDF of free path lengths
e expð�tÞ. The initial transition density in Eq. (10) is the
density of initially interacting (by extinction) radiation after
entering the Earth’s atmosphere. In both Eqs. (8) and (10) the
spatial integrations are carried out over the spatial region M

which includes the Earth and the Sun.
Since the thermal emission of the Earth’s surface and the

atmosphere is small in the UV/vis/NIR spectral range, it
is omitted in the following. Instead of Cð~r ,~oÞ as given in
Eq. (10), the normalized (i.e. P0ðlÞ ¼ 1) expression

Cð~r ,~oÞ ¼ wSunð~r ,~oÞeð~rÞexpð�tð~rSun,~rÞÞ ð11Þ

is used with the characteristic function of the Sun disc of
diameter {Sun in radians

wSunð~r ,~oÞ ¼

1

2p 1�cos
{Sun

2

� �� � if ~o �
~rSun�~r

j~rSun�~r j
4cos

{Sun

2

� �
,

0 else:

8>>><
>>>:

ð12Þ

Atmospheric radiation can be measured e.g. by a spectro-
meter, which in the following is called detector. In order to
formally introduce the detector, we define a detector
function:

jð~r ,~oÞ ¼ dð~r�~rdÞwFOVð~oÞ, ð13Þ

wFOVð~oÞ ¼
O�1

FOV if ~o 2 XFOV,

0 else:

(
ð14Þ
Please cite this article as: Deutschmann T, et al. The Monte
Introduction and validation of Jacobians and 3D features. JQSR
Eq. (13) describes a detector at ~rd with wFOV as the
characteristic function of its field of view (FOV). OFOV is
the detectors FOV solid angle.

2.2. Formal solution of the integral form of the RTE

The numerical solution presented in this paper is based
on the formal solution of the IRTE which can be found by
applying Banachs fixed point theorem to Eq. (8) in operator
form:

f ¼ Kf þC: ð15Þ

The fixed point form Eq. (15) results from introducing the
operator Ort with Ortf :¼ Kf þC abbreviating the right hand
side of Eq. (15). Banach’s theorem allows us to construct the
fixed point with ~f ¼ Ort

~f by successive application of Ort on
an initial guess, say C:

~f ¼ lim
n-1

On
rtC¼

X1
n ¼ 0

KnC if JKJo1: ð16Þ

The representation of the solution on the right side of
Eq. (16) is called Neumann series. Prerequisite for the
application of the theorem is that Ort is a contraction, i.e.
that Ort has a Lipschitz constant smaller than one. This
implies that the medium is bounded or that the single
scattering albedo is smaller than 1 for a measurable subset
of the medium. Information regarding the existence of a
solution of the RTE for different media or for the famous
Milne problem is detailed in [6,11] or [47]. Later in this
paper it is shown that the summands of order n in the
Neumann series are directly linked to scatter orders.

2.3. Adjoint (I)RTE and principle of reciprocity

In the context of discussing efficient numerical solu-
tions of the RTE, the so-called principle of reciprocity2 (also
called theorem of optical mutuality) is introduced. By that
principle the time direction of the radiative transfer
process is reversed. In order to do this formally, a minus
sign is introduced (see [6] or [11], Chapter 3 for a detailed
discussion) before the direction ~o in the RTE Eq. (1), i.e. one
applies the time reversal operator. This results in the so-
called adjoint RTE containing the adjoint transport operator
kyp ð~r ,~oÞ-ð~r u,~ouÞ
� �

in which ~r2~r u and ~o2~ou when com-
pared to Eq. (9). The adjoint IRTE is written as

f y ¼ Kyf yþj: ð17Þ

The solution of Eq. (17) is found in the same manner as for
the forward time regime:

f y ¼
X1
n ¼ 0

Kynj: ð18Þ

By regarding the transport process in reversed time direction,
sourcesC (Sun, thermal emission) and sinksj (detector) are
exchanged. Employing the inner product ðf ,gÞ ¼

R
Xf ðxÞ

gðxÞ dx, the theorem is expressed as follows [6]:

ðC,f yÞ ¼ ðf ,jÞ: ð19Þ
Carlo atmospheric radiative transfer model McArtim:
T (2011), doi:10.1016/j.jqsrt.2010.12.009
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Due to its mathematical relation to the detector function, in
literature f y is sometimes called importance function. Eq. (19)
states that functionals of the collision density for a certain
point of the phase space can be found by either determ-
ining the solution of the IRTE f and calculating ðf ,jÞ, or by
determining the solution of the adjoint IRTE f y ¼

P1
n ¼ 0 Kynj

and calculating ðC,f yÞ. This theorem is the basis of the so-
called backward Monte Carlo methods used to estimate RTE
functionals (e.g. radiances) of small area or small FOV
detectors (see also Fig. 4 later in the text).

3. Numerical solution of the RTE by Monte Carlo
integration

Monte Carlo integration is particularly suitable for high
dimensional integration problems. The Neumann series
(Eq. (16)) is of such type. In algorithms designed to solve
such integration problems, random numbers are used to
draw samples from the probability density functions
(PDFs) associated to the respective integration kernels.
Kahn [48] showed that the most effective Monte Carlo
algorithm in a computational cost sense is obtained when
drawing samples from the integration kernel normalized to
the integration domain and therewith transforming the
kernel into a PDF on the domain. Samples of these
distributions are called direct simulation samples. By
drawing samples of the nested transport kernel integrals,
an algorithm (ray tracing) is obtained that represents the
direct simulation of the transport process.

The focus in the remainder of this paper lies on the
backward Monte Carlo method which exploits the theorem
of reciprocity, i.e. the trajectories start at the detector and
are sampled until they are absorbed or they leave the
atmosphere. In fact, the resulting ray tracing algorithm is
identical to the forward Monte Carlo method, the only
difference being the further treatment of the light path
samples with respect to functional estimation.

3.1. Discretization of the simulation domain and input data

Prior to the ray tracing, McArtim initializes a data
structure containing all atmospheric properties that are
relevant to describe the RT in the domain of interest.
Coordinate lists containing either plane parallel (x,y,z) or
spherical radius, co-latitude and longitude coordinates
define a spatial subdivision. The resulting individual cells
have either plane surfaces (in the case of the plane parallel
and spherical longitude grids) or curved surfaces (for radius
and co-latitude grids).

In a first step, the thermodynamic and microphysical
properties of the individual cells are extracted and inter-
polated from the input files (T, p and relative humidity), and
the air density is calculated assuming air to be an ideal gas
considering the pressure p and the temperature T. Accord-
ing to a specific wavelength, a secondary data structure
with the same grid but only containing optical properties is
calculated. The cells contain total extinction, absorption
and scattering coefficients, the scattering coefficients of
Rayleigh and rotational Raman scattering, of the individual
particles, and parameters of their respective phase func-
tion. For the simulation of refraction (Snell’s law) the real
Please cite this article as: Deutschmann T, et al. The Monte
Introduction and validation of Jacobians and 3D features. JQSR
part of the refractive index of air is calculated according to
Ciddor [49]. Additionally, the individual gaseous absorp-
tion coefficients are stored, which is not necessary for the
ray tracing process but for functional evaluation.

The formula for the total extinction coefficient e is

e¼~nairðsRaylþsRRSÞþ
Xparticles

i

epiþ
Xabsorbers

i

naisai, ð20Þ

where ~nair is the number density of air. The Rayleigh cross
sectionsRaylðlÞ is calculated using the numerical formula of
Penndorf [50] but can also be supplemented by the user.

McArtim contains an approximate treatment of the Ring
effect. The Ring effect [51,52] is commonly assumed to be
caused by rotational Raman scattering (RRS, e.g. [44,53–56]).
The radiance contributions attributed to RRS relative to the
contribution by elastic scattering can be used to estimate the
strength of the Ring effect and therewith allow us to derive
information on aerosols and clouds [44]. For a derivation and
details about the implemented feature see [57].

Individual particle extinction coefficients epiðlÞ can
either be provided directly by the user or can be calculated
using a Mie code with an implementation following the
recommendations of Wiscombe [58]. Gas number densities
nai together with their absorption cross sectionssaiðlÞ yield
the gas absorption coefficients. The saiðlÞ can either be
defined by the user or calculated from the HITRAN database
[59] according to [60, Appendix C] using p and T of the
respective cell. Using the same notation as in Eq. (20), the
scattering coefficient can be expressed as

es ¼~nairðsraylþsRRSÞþ
Xparticles

i

$0iepi, ð21Þ

where$0iðlÞ denotes the individual particle single scatter-
ing albedo obtained from the Mie calculations or provided
by the user. Particle single scattering albedos are implicitly
accounted for in the total absorption coefficient and the
individual scattering coefficients. The phase function para-
meters are accessible through pointers stored in the cells
similar to the ‘‘cellular databases’’ described by O’Hirok and
Gautier [10].
3.2. Ray tracing or trajectory sampling

An essential part of the program is a ray tracing
algorithm that is described in detail in the remainder of
this section. The ray tracer pursues the trajectory of a model
photon through the domain by intersection point calcula-
tion and random sampling of scatter and absorption events.
The ray tracing algorithm corresponds to estimating the
solution of the adjoint IRTE f y by drawing samples from the
integrals in the Neumann series Eq. (18) using random
numbers equally distributed in [0,1].

The photons originate from the detector position (hence
backward Monte Carlo). The detector is described by its
characteristic function like, e.g., Eq. (13) describes a
detector with a circular FOV. For point like detectors with
a certain FOV the initial position is ~r

�
, and the initial

propagation direction ~o� is sampled from the density
wFOVð~oÞ. When calculating radiation that propagates into
Carlo atmospheric radiative transfer model McArtim:
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Fig. 1. Schematic depictions of the random samplings described in the

Section 3.2.1 (panel a), 3.2.2 (panel b) and 3.2.3 (panel b). In total, the

procedure generates an event ~xnþ1 ¼ ð~r ,~oÞ from its predecessor ~xn

represented here by ~r u and ~o u (remaining panel).
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a spatially extended volume R of the domain (e.g. when
regarding monochromatic heating rates or actinic fluxes),
the initial location is sampled from the respective PDFwRð~rÞ
of R whereas the initial propagation direction is a point
sampled from the three dimensional unity sphere. Both,
sampled location and direction of propagation represent
the first event of the adjoint transport process~x0 ¼ ð~r

�
,~o�Þ

or a sample of jð~r ,~oÞ.
In order to sample an event~xnþ1, which corresponds to

estimating ðKyÞnþ1j� Ky~xn, McArtim simulates the adjoint
transition density kypð~xn-~xnþ1Þ. Because ~xnþ1 only
depends on the immediate predecessor ~xn, the resulting
procedure of generating phase space samples is a Markov
process. The estimation can be separated in (a) simulation
of the single scattering albedo, (b) the sampling of a scatter
angle from the effective phase function, and (c) sampling of
the free path length (compare to Fig. 1).

3.2.1. Simulation of the single scattering albedo

Once the location of an extinction event is known, its
type (absorption or scattering) is determined with a
random number a$0

. The effective single scattering albedo
$0 is the ratio of the total scatter coefficient es defined in
Eq. (21) and the total extinction coefficient e in Eq. (20).
Using a$0

, $0 is simulated by testing a$0
4$0. If this

condition is met, the photon is absorbed. Otherwise
scattering occurs. This approach is also referred to as
Russian roulette technique. If the photon is scattered, i.e. if
it survives the Russian roulette, the trajectory sampling
procedure is continued as described in the next Section
3.2.2. Otherwise the trajectory is terminated and the
(adjoint) collision density estimate is complete.

3.2.2. Sampling of the scatter angle

The effective phase function is denoted by

PðmÞ ¼ e�1
s

Xparticles

i

$0iepiPiðmÞ, ð22Þ

where the$0i are set to one for Rayleigh and RRS scattering.
The anisotropic Rayleigh phase function PRaylðmÞ ¼ yþ þy�m2

(see [61]) is defined by

y7 ¼
3ð17rðlÞÞ
2ð2þrðlÞÞ

with rðlÞ ¼ 6
Fl�1

2þ7Fl
: ð23Þ
Please cite this article as: Deutschmann T, et al. The Monte
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The King correction factor is Fl ¼ 1:0367þ5:381
�10�16l�2

þ0:304� 10�28l�4 according to [62]. The RRS
phase function is defined as

PRRSðmÞ ¼ 3
40ð13þm2Þ: ð24Þ

The selection of random scatter angles consists of two steps.
First, the selection of the scatter object and, then, sampling a
scatter angle according to the particular phase function. For
the former, a random number ao is drawn. The index of the
scatter object o is determined according to the relation

o¼min
o

Xo

i

epi4aoes

( )
: ð25Þ

Depending on the phase function PoðmÞ a new propagation
direction is chosen. The azimuth angle j is found by
j¼ 2paj and m is selected by applying the inverse cumu-
lative distribution function of the phase function to a random
number 2am.

In the case of Rayleigh and RRS scattering, Cardan’s
formulas are used, whereas for aerosol and cloud particles
several different models (Henyey–Greenstein, Legendre
polynomial expansion, table methods) have been
implemented.

3.2.3. Free path length sampling

The remaining step in the procedure of sampling the
event ~xnþ1 from ~xn is to determine the photon’s free path
length (FPL) with the CDF Plð~rÞ

Plð~rÞ ¼ expð�tð~rn,~rnþ1ÞÞ, ð26Þ

where ei refers to the total extinction coefficient in an
individual cell. The indices (i and l in the following) begin
with the cell corresponding to ~rn.

According to the chosen discretization of the atmo-
sphere, the polygon between~rn and~rnþ1 is subdivided into
l segments of length di, each with constant extinction
coefficients ei (see Fig. 2). At each polygon point refraction
is simulated using Snell’s law according to the cell refrac-
tive indices. To sample~rnþ1 from Eq. (26) a random number
al is drawn and a corresponding optical thickness is
calculated:

tl ¼�lnðalÞ: ð27Þ

By gradually summing up the ti, the cell index l of~rnþ1 can
be determined:

l¼ max
l ¼ 1,...

Xl

i ¼ 1

dieiotl

( )
: ð28Þ

In order to find the exact position of ~rnþ1 in the cell l, the
distance dl between ~rnþ1 and the last intersection point
between the LOS and the cell boundary is calculated:

dl ¼
tl�

Pl�1
i ¼ 1 diei

el
: ð29Þ

In the case that the sampled optical thickness exceeds the
optical thickness through the atmosphere along the pro-
pagation direction, the photon escapes from the atmo-
sphere and the trajectory is terminated at the location of
the last scatter event.
Carlo atmospheric radiative transfer model McArtim:
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Fig. 2. Estimation of the free photon path length j~rnþ1�~r nj (schematic in

Fig. 1, panel 1). The ray tracer subdivides the medium into t�segments

according to the spatial grid and determines ~r nþ1 by sampling of the

optical density tl between ~r n and ~r nþ1.
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3.2.3.1. Ray tracing on spherical 3D grids. At presence there
are four grid types implemented: plane parallel 1D/3D and
spherical 1D/3D grids. In the remainder of this section on
FPL sampling, we want to describe a, to our knowledge,
unique feature of McArtim: ray tracing on spherical 3D
(sp3D) grids. During the ray tracing McArtim updates two
closely related quantities: the position of the model photon
~p in the atmosphere and the 3D grid indices ðixjj,iyjy,izjrÞ of~p
relative to the respective grid. The problem of finding the
intersection point of the model photon at ~p propagating
into direction ~k with the boundary of the sp3D grid
cell states:

pxþlkx

pyþlky

pzþlkz

0
B@

1
CA¼

rAjBcosjAjBsinyAjB

rAjBsinjAjBsinyAjB

rAjBcosyAjB

0
B@

1
CA: ð30Þ

The spherical coordinates indexed with A and B mark the
adjacent grid coordinates of the cell. Due to the structure of
the solution for l it is advantageous to know in advance,
whether an intersection point with the respective A or B

surface can be expected. This is examined by calculating
the scalar product of~k with the spherical unit vectors~er ,~ey
and~ej at~p. The sign of the product tells us whether to test
for intersection with the surface lying into positive (B) or
negative (A) direction along the grid.

The distance to the cell boundary is calculated employ-
ing the following formulas:
�

P
In
Radius surfaces r¼ const. The surfaces are spheres and
the resulting equation for l is quadratic:X
i ¼ x,y,z

ðpiþlkiÞ
2
¼ r2

AjB ) l2
þ2l

X
i ¼ x,y,z

pikiþ
X

i ¼ x,y,z

p2
i �r2

AjB ¼ 0:

ð31Þ
�
 Co-latitude surfaces y¼ const. The surfaces are cones
oriented along the ~ez axis with the half aperture angle
yAjB obeying the equation:

~ez

~r

j~r j
¼ cosðyAjBÞ ) x2þy2�tan2ðyAjBÞz

2 ¼ 0: ð32Þ

Inserting Eq. (30) into Eq. (32) yields quadratic equa-
tions in l.

�
 Longitude surfaces j¼ const. These surfaces are

planes. The condition for the inter section point can
be derived from the ratio of the first two coordinates
lease cite this article as: Deutschmann T, et al. The Monte
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of Eq. (30):

tanjAjB ¼
pyþlky

pxþlkx
) l¼

py�pxtanjAjB

kxtanjAjB�ky
: ð33Þ

The most famous problem with ray tracing on spherical
grids occurs, when ~p is located on a cell boundary and the
inter section is searched with the same cell boundary. This
can happen when the grid index ðixjj,iyjy,izjrÞ is determined
from~p. Due to the limited machine precision the index will
flicker between two adjacent cells. If the ‘‘wrong’’ index is
chosen the solution for l as a result of the formulas above
will be in the range of the machine precision, and the ray
tracing algorithm enters an infinite loop. Our experience
has shown that it is worthwhile to accept the finite
machine precision and declare the photon to be forward
propagated to the adjacent cell and thereby to update the
grid index.

3.2.4. Ground scattering

During the FPL ray tracing procedure, the ray occasion-
ally intersects the Earth’s surface. In this case, McArtim
samples the type of interaction (absorption or scattering)
using the respective surface albedo and samples a new
propagation direction according to the properties of a
Lambertian reflector, i.e. the cosine of the scattering angle
relative to the local surface normal mL is sampled by

mL ¼
ffiffiffi
a
p

ð34Þ

using a random number a 2 ½0,1�.
Besides the simple plane parallel resp. curved surface of

the spherical grids a more detailed description of the
surface topography is implemented. The xi/yj, respectively,
ji=yj grids define a horizontal sub division of the surface
into 2D cells. For each point of the joint grid (xi/yj) an
altitude value hij can be defined yielding a point
~rðxi,yj,h0þhijÞ where h0 marks the neutral elevation of
the ground, i.e. the Earth radius in case of the spherical
grids. The function ~r maps the grid coordinates to the
absolute position. Using the four corner altitudes a fifth
point ~mij is calculated as follows:

~mij ¼~rð
1
2 ðxiþxiþ1Þ,

1
2ðyjþyjþ1Þ,

h0þ
1
4ðhijþhiþ1jþhijþ1þhiþ1jþ1Þ: ð35Þ

These five points define four triangles with the same corner at
~mij forming a surface description in the 2D grid cell ij. We
believe that the feature is implemented correctly. However,
a validation is necessary. A similar approach of modeling
topography has recently been presented in Mayer et al. [63].

3.2.5. Escape from the atmosphere or absorption

The sampling procedure described in Sections 3.2.1,
3.2.2, 3.2.3 and 3.2.4 is repeated until an absorption event
occurs, or until the photon leaves the atmosphere. The
trajectory (or event chain) ~x0,~x1, . . . ,~xn can then be
regarded as a sample of the adjoint collision density
f yð~x

�
Þ. Fig. 3 shows three example depictions of events

resulting from the detailed backward Monte Carlo
algorithm applied to a model atmosphere described in
Section 5.3.
Carlo atmospheric radiative transfer model McArtim:
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Fig. 3. Backward trajectory events occurring when observing l¼ 670 nm radiation scattered at a cumulus (Cu) cloud (see Section 5.3 and the Figs. 8 and 9 for

the resulting radiance fields). Three perspectives of the simulated domain (base size 6.67�6.67 km2) are shown. Green points represent cloud and aerosol

particle scatter events, blue points depict absorption events. Ground scattering is shown in yellow and red dots symbolize Rayleigh scattering by air

molecules. The Rayleigh scatter events located on the periodically continued (periodic boundary conditions) line of sight are the first events occurring when

the photon ray enters the atmosphere. According to the optical properties, the following scatter events ‘‘in line’’ are those by aerosol and cloud particles.

Notice that the optical properties of the whole domain contribute to functionals (see Section 4) calculated from this ensemble of photon trajectories.

Fig. 4. Left panel: Backward photon trajectory (f y estimate, solid polygon line) originating from the detector. Right panel: Forward photon trajectory

(f estimate, solid polygon line) originating from the Sun. In the forward approach only scatter events ~r i (dots) inside the FOV (dashed gray lines)

contribute (dotted lines) to a simulated measurement, whereas every scatter event yields a contribution (dotted lines) when exploiting a backward

trajectory sample of f y .
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4. Calculated physical quantities

A Monte Carlo trajectory is a physically representative
sample of a light path. At the same time it is an estimate of
the integrals in the Neumann series (see Eq. (16) or
Eq. (18)). Several measurable quantities such as radiances,
light path integrals (obtainable e.g. by means of spectro-
scopy) and their Jacobians with respect to optical atmo-
spheric parameters can be expressed as functionals of the
collision densities f (respectively, f y using the adjoint RT
theory). Fig. 4 shows two estimates of f and f y, respectively.

In literature, the related formulas are known as local
estimates and dependent sampling [6,11]. In order to
facilitate the readability, the following notation is intro-
duced:

m�n :¼
~rSun�~rn

j~rSun�~rnj
� ~on�1, ð36Þ

mi,j :¼ ~o i � ~oj, ð37Þ

½ab�ð~rÞ :¼ að~rÞbð~rÞ and ½ab�c :¼ acbc , ð38Þ
Please cite this article as: Deutschmann T, et al. The Monte
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snðmÞ :¼
XNs

t ¼ 1

½$0,tetPtðmÞ�ð~rnÞ, ð39Þ

t�-n-���-0 :¼ tð~rSun,~rnÞþ
Xn

i ¼ 1

tð~r i�1,~r iÞ: ð40Þ

Thems in Eq. (36), (37) and (39) are cosines of scatter angles,
Ns is the number of scatterers in the cell corresponding to
~rn. Eq. (38) is needed only to avoid repeated indexing of
quantities associated to individual cells. The snðmÞ in
Eq. (39) can be interpreted as an optical density of a scatter
event involving a certain $0 and a phase function PðmÞ.
Eq. (40) is an abbreviation for the optical thickness between
the Sun and the detector through a photon trajectory with n

scatter events.
In the following, formulas for estimates yn of functionals

y will be given. Such an estimate yn can be obtained from a
single trajectory generated by the algorithm described in
the previous section. In order to calculate a functional with
a certain accuracy the estimates yn obtained from a
sufficiently large number of trajectories N have to be
Carlo atmospheric radiative transfer model McArtim:
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averaged:

y

 �
�

1

N

XN

n ¼ 1

yn: ð41Þ

The variance of a functional is obtained by

s2ðyÞ �
1

N

XN

n ¼ 1

y2
n�

1

N

XN

n ¼ 1

yn

 !2

: ð42Þ

The convergence of the means towards the true value of the
functionals with increasing N relies on the law of large
numbers.

4.1. Radiances

One basic functional of interest is the radiance I� which
is given by

I�ð~r
�
,XFOVÞ ¼

1

eð~r�Þ

Z
XFOV

f ð~r
�
,~oÞ d~o ¼ 1

e ðf ,jÞ, ð43Þ

where the inner product of f and Eq. (13) is used. The
radiance is a quantity that is closely related to the collision
density. I� is calculated by integrating the collision density
over the spatial directions of the field of view and sub-
sequent normalization with the extinction coefficient. I�
can be obtained either from a forward trajectory ensemble
as in Eq. (43), or from a backward trajectory ensemble
exploiting the principle of reciprocity:

I� ¼
1

e
ðf ,jÞ ¼ 1

e
ðC,f yÞ ¼

1

e
X1
n ¼ 0

ðC,KynjÞ: ð44Þ

For a single backward trajectory with N scatter events, an
estimate of I� is calculated by carrying out the integrals in
Eq. (18):

I� �
XN

n ¼ 0

cð~rnÞwn, ð45Þ

with

wn ¼ e�t�-n Pð~rn,m�nÞ: ð46Þ

The trajectory is an estimate for f ðyÞ such that the integrals
in Eq. (18) assume the simple form Eq. (45). The function
cð~rnÞ approximately equals the solid angle area of the Sun
disc as seen from ~rn. Due to the large distance between
Earth and Sun, cð~rnÞ can be regarded as constant and is
therefore omitted in the derivations that follow. The weight
wn can be interpreted as the joint probability for the
transmission of light over the distance between the Sun
and the point~rn, and the probability of scattering with the
cosine of the scatter angle mn. In the current implementa-
tion of McArtim refraction is not taken into account in the
trajectory part between the Sun and the particular scatter-
ing event of the local estimate.

In the next section, Jacobians of the radiance with
respect to optical parameters of the atmosphere are
considered. Actinic fluxes (AF) can be obtained by assum-
ing the detector’s FOV is 4p. The only difference to Eq. (45)
is that the direct light contribution is also accounted for.
Therefore, the following discussion on radiance Jacobians
also addresses Jacobians of AFs.
Please cite this article as: Deutschmann T, et al. The Monte
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4.2. Jacobians of the radiance

In order to reconstruct the state of the atmosphere from a
spectroscopic measurement of scattered Sun light, Jacobians of
the measured quantities with respect to parameters of the RT
are needed for certain cells (in the following indexed with c).
In the context of inversion the state could for example be the
number density profile of a trace gas or the extinction
coefficient profile of an aerosol. Thus, the state components
x of interest are usually the absorption coefficientbc as well as
optical aerosol properties e.g. extinction coefficient ec , single
scattering albedo $0,c or phase function parameters as for
instance the asymmetry parameter g for the Henyey–
Greenstein model or Legendre polynomial coefficients for
more complicated phase functions.

Formulas for estimates of radiance Jacobians were first
calculated by Marchuk et al. [6]. In order to calculate these
quantities, McArtim uses importance sampling (sometimes
also referred to as dependent sampling). The idea behind this
technique is to approximate a complicated kernel by a kernel
whose cumulative distribution function (CDF) is analytically
invertible. The samples are then drawn from the simple PDF
and each sample is weighted with the ratio of the true PDF
and its approximation. Importance sampling is necessary in
the context of atmospheric Monte Carlo RTM because direct
sampling of Jacobians involves complicated integration ker-
nels and non-analytic CDFs which would require large
computational efforts for their inversion. Another advantage
of the technique is that one trajectory ensemble can be used
to estimate all derivatives simultaneously. The drawback,
however, is a large variance of the estimates.

The fundamental term for the calculation of Jacobians is

Gn ¼�t�-n-0þ lnðsnðm�nÞÞþ
Xn�1

i ¼ 1

lnðsiðmi,i�1ÞÞ: ð47Þ

Gn can be derived from the logarithm of the kernel in the
nth summand of the Neumann series (see [6] for details).
Eq. (47) can be interpreted as the optical thickness along
the light path considering scattering processes. Using
Eq. (47) the structure of the estimate of a Jacobian is

d

dx
I� �

XN

n ¼ 0

wn
d

dx
Gn: ð48Þ
4.2.1. Absorption coefficient Jacobians

The simplest expression of a Jacobian is obtained for
derivatives with respect to the absorption coefficient x¼ bc:

d

dbc

Gn ¼�lnc , ð49Þ

where lc
n

is the path length of the trajectory n (with n scatter
events) in the cell c. In order to obtain absorption coefficient
Jacobians of the radiance Eq. (49) is inserted into Eq. (48). For
a certain absorber, bc is the product of the wavelength
dependent absorption cross section scðlÞ and the number
density nc. After applying the chain rule, the number density
Jacobians are given by

d

dnc
I� ¼ scðlÞ

d

dbc

I�: ð50Þ
Carlo atmospheric radiative transfer model McArtim:
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For later purposes we introduce the intensity weighted
photon path length Lc through the cell c:

Lc ¼�
d

dbc

lnðI�Þ ¼

PN
n wnlnc

D E
PN

n wn

D E : ð51Þ

In order to evaluate DOAS slant column density measure-
ments, the box air mass factor of the box c with the height hc is
defined as

BoxAMFc ¼
Lc

hc
: ð52Þ

The BoxAMF can be interpreted as the ratio of the intensity
weighted light path length in the cell c and the box
height hc.
4.2.2. Jacobians of optical particle properties

The relevant optical properties of a particle t in the cell c

are the extinction coefficient ect , the single scattering
albedo $0,ct and phase function parameters such as the
asymmetry parameter gc or higher Legendre moments. The
calculation of the respective derivatives from Eq. (47)
results into:

d

dect
Gn ¼�lnc þ

Xn�1

i ¼ 1

wcð~r iÞ

siðmi,i�1Þ
½$0,tPtðmi,i�1Þ�cð~r iÞ

þ
wcð~rnÞ

snðm�nÞ
½$0,tPtðm�nÞ�c , ð53Þ

d

d$0,ct
Gn ¼

Xn�1

i ¼ 1

wcð~r iÞ

siðmi,i�1Þ
½etPtðmi,i�1Þ�cþ

wcð~rnÞ

snðm�nÞ
½etPtðm�nÞ�c ,

ð54Þ

d

dgc

Gn ¼
Xn�1

i ¼ 1

wcð~r iÞ

siðmi,i�1Þ
$0,tet

@Ptðmi,i�1Þ

@g

� �
c

þ
wcð~rnÞ

snðm�nÞ
$0,tet

@Ptðm�nÞ
@g

� �
c

, ð55Þ

where wcð~rÞ is a characteristic function of the cell c that
assures that only scatter events located at~r inside the cell c

contribute to the sum. In comparison to Eq. (49), the
structure of Eq. (53) contains an additional expression that
originates from the derivative of the effective phase func-
tion. The lnc is missing in Eq. (54) because the optical density
along the trajectory does not depend on $0,ct . In Eq. (55),
the asymmetry parameter can formally be exchanged by
any other phase function parameter, e.g. higher moments
of Legendre polynomials.
4.3. Light path integrals

Certain spectroscopic analysis techniques yield light path
integrals (LPIs) of gas number densities (e.g. slant column
densities (SCDs) from DOAS), water (liquid water path: LWP)
or ice content (ice water path: IWP). McArtim calculates these
quantities using logarithmic derivatives of the radiance with
respect to the absorption coefficient Lc in all cells of the domain
grid. Using all Lc, the LPI of a physical property with the density
nð~rÞ, respectively, nc in the cell c is given by
Please cite this article as: Deutschmann T, et al. The Monte
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Z
light path

nð~rÞ dr�
Xcells

c

Lcnc : ð56Þ

Eq. (56) is only an approximation with regard to the dis-
cretization of the atmosphere into cells, each containing a
constant number density nc.

4.3.1. Jacobians of light path integrals

The last type of Jacobians discussed in this section are
those of LPIs defined in Eq. (56). These Jacobians are
particularly interesting when applying the O4 method
(e.g. [30–32]) for aerosol property retrievals, or for inter-
preting spectroscopic measurements with respect to ice
and liquid water paths. McArtim uses Jacobians of the Lc to
calculate LPI Jacobians:

d

dx
Lc ¼�

d

dx
d

dbc

lnðI�Þ ð57Þ

d

dx
Lc ¼�

I�
@2I�
@x@bc

�
dI�
dbc

� �
dI�
dx

� �
I2
�

ð58Þ

d

dx
Lc ¼ LcXx�Ycx: ð59Þ

Here, Xx is the logarithmic derivative of the radiance I�with
respect to x. Ycx is a ‘‘mixed’’ derivative containing the
intensity weighted derivatives of I�with respect tobc and x.
Lc and Xx are calculated in the manner described in
Section 4.2.2. In order to calculate Ycx, the respective
logarithmic derivatives of a single intensity estimate are
multiplied for each scatter event n and weighted by wn.

4.3.2. Effective number of scatter events of one type

The effective number of scatter events of one type is
obtained by calculating the intensity weighted scatter
count of the respective optical constituent p:

Np ¼

P1
n ¼ 0 Np,nwn


 �P1
n ¼ 0 wn


 � : ð60Þ

Here, Np,n denotes the number of scatter events on particles
of the type p on a trajectory sample of order n. In Section
5.3.1 these quantities are used to demonstrate how clouds
influence the scatter processes at the ground by air
molecules and aerosol particles.

5. McArtim features, inter comparison and validation

The primary radiation quantities calculated by McArtim
are radiances, actinic fluxes, (monochromatic) heating
rates and Jacobians of these quantities with respect to
(3D) cellular optical properties such as the absorption
coefficient, and the optical particle properties extinction
coefficient, single scattering albedo and phase function
parameters. Additionally, McArtim calculates effective
numbers of scatter events for molecular, ground and
particle scattering and radiance contributions attributed
to photons interacting with the ground, as well as photon
path length distributions.

Particle optical properties can be defined directly,
where the Henyey–Greenstein model or an expansion into
Carlo atmospheric radiative transfer model McArtim:
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Legendre polynomials is employed to parametrize the
scattering phase functions. For certain purposes (materi-
als) Rayleigh phase functions can also be selected. Alter-
natively, particle optical properties can be defined
indirectly by defining microphysical parameters such as
3D fields of N log normal size distributions, or size bins, and
a wavelength dependent complex refractive index. Intern-
ally, a Mie code is used to map microphysical to optical
parameters.

Gaseous absorption can be quantified by 1D/3D number
density distribution profiles and location dependent absorp-
tion cross sections. For some gases, the HITRAN database can
be utilized, the program then internally calculates pressure
and temperature dependent cross sections using the HITRAN
data for each cell of the chosen grid.

The supported grids are spherical 1D/3D and plane
parallel 1D/3D. For all grid types a heterogeneous multi-
spectral ground albedo map can be defined, whereas for the
3D grids topographic surface information can also be
included into the model.

In previous radiative transfer model inter comparisons,
only radiances and box air mass factors were validated [15].
Regarding these quantities, McArtim was intensively com-
pared with TRACY-II and an agreement was found within
the Monte Carlo noise range. Although the McArtim code
originates from the code of TRACY-II, several aspects are
fundamentally different. For instance in TRACY-II gaseous,
particle or surface absorption is not accounted for during
the path generation but it is considered during the sub-
sequent functional calculation by applying the equivalence
theorem. The separation of absorption and scattering
allows modification of the absorbing components using a
single trajectory ensemble without increasing the variance
of the estimated functionals. However, the drawback of this
procedure is its high computational costs since the trans-
mittance has to be calculated for each trajectory of the
ensemble. This involves summations of optical thickness
snippets along the sampled paths followed by the invoca-
tion of an exponential function in each scatter order. In
addition, the functionals may contain many small con-
tributions originating, for instance, from scatter events
after a ground scatter event in the chain. Therefore, TRACY-
II is much slower than McArtim especially for small ground
albedo and clouds.

In the following, comparisons of measured and modeled
radiances are shown. Further, since McArtim also provides
new functionals and Jacobians, these quantities are vali-
dated by self-consistency tests. The 3D features of McArtim
have partially been investigated by [64,65]. The section is
therefore concluded with inter comparison exercises for
some scenarios of the I3RC [37].

5.1. Comparison to measurements

The most direct method to validate a RTM is clearly to
compare its results to measurements. However, a limita-
tion of this approach arises from the uncertainty of the
atmospheric state during such a measurement which is
often too large to support a precise simulation of the
measurements using the RTM. One region of the atmo-
sphere in which the state is fairly well constrained is the
Please cite this article as: Deutschmann T, et al. The Monte
Introduction and validation of Jacobians and 3D features. JQSR
stratosphere. There, RT is predominantly determined by
Rayleigh scattering by air molecules and absorption by
ozone in the UV spectral range. For all model calculations
shown in this sub section, a standard atmosphere exclud-
ing aerosol or cloud particles is used.

Here, the radiances modeled by McArtim are compared
to those measured by the balloon-borne limb scanning
mini-DOAS instrument deployed during the StraPolÉte
campaign in September 2009. The campaign took place
at the Esrange Space Center located near Kiruna (67.91N,
22.11E) in northern Sweden. During the campaign the mini-
DOAS instrument [24] consisting of two optical spectro-
meters, an Ocean Optics USB2000 with FWHM � 0.7 nm
(6.2 pixels) and a QE65000 with FWHM � 0.4 nm (4.75
pixels) was mounted on the LPMA/DOAS payload and
launched into the stratosphere on September 7th 2009
at 14.50 UT. After two hours of ascent (at around 16:45 UT)
the float altitude was reached at 32 km. The balloon stayed
on float while limb scanning measurements were per-
formed during sunset and sunrise on September 8th 2009.
During all measurements the relative solar azimuth angle
was kept constant at 901.

Fig. 5 inter compares measured and modeled radiances
for the wavelengths 350, 370 and 390 nm (from the
QE65000) and 420, 465 and 490 nm (from the USB2000)
for the balloon ascent for which the telescope elevation
was fixed to 01. The measured radiances are routinely
corrected for the detector dark current and offset, and are
averaged over 5 adjacent spectrometer channels (i.e. 5
channels roughly correspond to a 1 nm range around the
center wavelength). In order to be able to compare the
uncalibrated measured fluxes to the modeled fluxes, both
are normalized to the radiances obtained at the float
position.

Aiming at investigating the performance of McArtim for
high SZAs, Fig. 6 inter compares measured and modeled
radiances as a function of the SZA at the float altitude over
Kiruna during sunrise. The same normalization procedure
as described for Fig. 5 is applied to the measured and
modeled radiances. In this figure only radiances of the
visible spectral range are shown due to a technical problem
with the UV spectrograph.

With increasing altitude, the recorded light is less
affected by multiple scattering processes. Additionally, the
sampled atmosphere becomes optically thinner due to the
fading presence of aerosol and cloud particles, and mole-
cular scattering becomes the dominating scatter process.
Therefore, and also due to the chosen normalization method,
the uncertainties decrease with altitude. During the ascent
above 10 km, the balloon gondola suffered from pendulum
oscillations causing perturbations of the viewing direction
and, thereby, perturbations of the measured radiances. Since
these movements are not recorded by any inertial state
measuring device, they are not accounted for by the model.
Another RT uncertainty is the spectral ground albedo for the
measurement site. In the model settings a gray (wavelength
independent) albedo of 0.05 is assumed. Uncertainties in the
aerosol load can be reduced by performing a detailed
inversion of the aerosol optical properties. In this study,
however, a purely Rayleigh scattering atmosphere was
assumed not containing any particles.
Carlo atmospheric radiative transfer model McArtim:
T (2011), doi:10.1016/j.jqsrt.2010.12.009
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Fig. 5. Comparison of measured (red crosses) and modeled (green dashed lines) normalized radiances for different wavelengths during the balloon gondola

ascent of the mini DOAS over Kiruna, Sweden on September 7th 2009, between 14:53 (lift off) and 17:01 when reaching the float position. Using trajectory

data with a time resolution of 1 Hz, the modeled radiances were obtained by averaging, thus simulating time integration by the spectrometers. The radiance

normalization was achieved by dividing by radiances obtained in the float position (see text for details). Top panel: QE65000 and bottom panel: USB2000

optical. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Possible reasons for the deviations observed between
model and measurement at large SZA are:
�

P
In
Polarization effects: As already mentioned in Section 2, in
the measurement geometry under consideration devia-
tions of the ‘‘scalar’’ radiance can be expected due to
polarizing effects of the prevailing molecular Rayleigh
scattering.
lease cite this article as: Deutschmann T, et al. The Monte
troduction and validation of Jacobians and 3D features. JQSR
�

C
T (
Refraction affecting the light path between a scatter
event and the Sun since currently refraction is not
simulated for these parts of the photon trajectories.

�
 The so-called center-to-limb-darkening (CLD) effect [66].

This effect originates from different Fraunhofer spectra at
the center compared to those at the edge of the Sun disc in
combination with a strong transmission gradient over the
Sun disc in the limb measuring geometry at large SZA.
arlo atmospheric radiative transfer model McArtim:
2011), doi:10.1016/j.jqsrt.2010.12.009
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Fig. 6. Comparison of modeled and measured radiances during sunrise at the float position over Kiruna (for details see text).
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�

P
In
3D uncertainties in the atmospheric property and surface
composition at the tangent point, i.e. where the local SZA is
exactly 901. By varying the vertical aerosol extinction
profile and the ground albedo it is not possible to reproduce
the SZA dependency of the radiances.

�
 Systematic uncertainties of the actual measurement

geometries. Sensitivity studies reveal that the differ-
ences between modeled and measured radiances can
also be attributed to a slight misalignment of the
telescope mounting.

The polarization, refraction and the CLD effect will be
subject of future studies. However, the overall agreement
of measurement and model for SZA up to 911 is fairly good,
whereas for larger SZAs the modeled and measured
radiances differ.

5.2. Self-consistency tests of particle optical property

Jacobians

Jacobians of the radiances, actinic fluxes or light path
integrals are validated using self-consistency tests. Their
credibility relies on the validity of the quantities from
which the Jacobians are derived, i.e. radiances and light
path integrals (DOAS SCDs). SCDs are assumed to be correct
since they can be obtained with the help of box air mass
factors or the related absorption coefficient Jacobians of the
logarithmic radiance (see [15]).

The applied self-consistency test consists of the follow-
ing steps:
1.
 Systematic variation of a certain model parameter (e.g. a
particles single scattering albedo or phase function
moment).
lease cite this article as: Deutschmann T, et al. The Monte
troduction and validation of Jacobians and 3D features. JQSR
2.
C
T (
Fit of a suitably flexible model function to the simulated
quantity.
3.
 Comparison of the derivative of the fit model function
with the Jacobians provided by the simulation.

Fig. 7 shows examples of these tests for Jacobians of the
radiance and of the optical thickness t of O4, with respect to
the aerosol extinction coefficient in the lowermost layer of
the atmosphere e½0,0:1�km, the aerosol single scattering
albedo $0 and the asymmetry parameter g. As indicated
by the panels of Fig. 7, there is a reasonable agreement
within the MC noise between the Jacobians predicted by
the model and the polynomial derivatives. The deviations
for the Jacobians dI�=dg and dtO4

=de½0,0:1�km can be
explained by insufficient fitness (flexibility) of the poly-
nomials used for the test. Nevertheless it appears that the
predicted Jacobians are unbiased.

5.3. I3RC test case 4

Next we inter compare McArtim’s predictions with cor-
responding simulations of other RT models for cases of the
I3RC [37]. In the second phase of the I3RC certain radiative
characteristics of a field of cumulus (Cu) clouds are compared.
The clouds are represented by their optical properties at the
wavelength 670 nm. A single phase function (approximated
with 180 Legendre moments) and a single $0 are assumed.
Extinction coefficients are given in form of a 100�100�36
cell 3D field, extending over 6.67�6.67 km2. The vertical cell
height varies roughly between 200 m below 1 km, 40 m in
the z range [1 km, 2.44 km] of the cloud field, and above
2.44 km coarser layer heights are assumed.

Here we compare top of the atmosphere (TOA) bidirec-
tional reflectance (BDR) maps calculated by McArtim with
arlo atmospheric radiative transfer model McArtim:
2011), doi:10.1016/j.jqsrt.2010.12.009
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whereas on the right side their derivatives f u1j2ðxÞ ¼ df 1j2=dx are shown. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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those of the I3RC models (second set, experiments 6 and 7),
where the I3RC results consist of averaged results obtained
from various unbiased RTM. The maps are obtained by
setting a 01FOV detector at 30 km altitude above each
ground pixel of the map measuring in nadir direction as
well as at a 601zenith angle. Here, the BDR is defined as

BDR¼
pIabs

F0mSZA

¼
pI�
mSZA

, ð61Þ

where Iabs is the absolutely calibrated radiance, F0 the
extraterrestrial solar irradiance at TOA and mSZA is the
cosine of the solar zenith angle.

The purple cloud shadows in the uppermost row in Fig. 8
attest to the fully 3D ray tracing capabilities of McArtim. In
the middle column, the relative differences (ratios of the
absolute deviations McArtim vs. I3RC and the I3RC BDRs)
between the results of the I3RC models and McArtim are
shown. The differences are dominated by Monte Carlo
noise that only weakly correlates with the simulated
Please cite this article as: Deutschmann T, et al. The Monte
Introduction and validation of Jacobians and 3D features. JQSR
radiance fields and seems to have a random nature. In
the simulations carried out, the number of simulated
trajectories is set to 10,000, which leads to standard
deviations (assuming Gaussian noise) of between 4% and
50%. The variance of the estimated radiances strongly
depends on the medium penetrated by the contributing
photons, i.e. it significantly differs for cloudy and clear sky
pixels. This could explain higher deviations especially in
cloudy regions (Figs. 8 and 9) than for the cloud free
regions. However, the noise signature seems to be only
weakly correlated with the spatial extinction coefficient
distribution. The recent study [67] demonstrates how the
variance of radiances in the presence of clouds with
strongly forward peaked phase functions can efficiently
be reduced.

5.3.1. Effective number of scatter events

Plots of the effective number of scatter events are
illustrative in order to demonstrate the versatility of the
Carlo atmospheric radiative transfer model McArtim:
T (2011), doi:10.1016/j.jqsrt.2010.12.009

dx.doi.org/10.1016/j.jqsrt.2010.12.009


Fig. 8. Resulting BDR maps for the I3RC case 4, experiment 6 (l¼ 670 nm). The cloud particle phase function has been approximated by Legendre

polynomials to build look up tables. Left panel column: I3RC consensus results, right panel column: McArtim BDRs, middle panel column: relative difference

McArtim vs. I3RC (see text). Model geometry: solar zenith angle (SZA) 01, zenith angle (ZA) and viewing (azimuth) angle (VA) as shown in the captions of the

respective plots.
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Monte Carlo method. In the case of Rayleigh and rotational
Raman scattering, $0 is unity. In Eq. (60) the Np,n are the
number of scatter events of type x occurring in a trajectory
sample of scatter order n.

Fig. 10 shows these quantities for the same geometries
as in Fig. 8. In the first column the effective number of
ground scattering events is shown. In cloud free regions,
the result indicates that the photon trajectories undergo an
average of roughly 1.4 ground scatter events. Below the
clouds, the number approaches zero due to the cloud
shielding. Thus, the sensitivity of the measured TOA
radiances for ground properties is significantly decreased
in cloudy compared to cloud free regions. The second
Please cite this article as: Deutschmann T, et al. The Monte
Introduction and validation of Jacobians and 3D features. JQSR
column shows Nx for scattering by air molecules. As for
scattering by aerosols (third column) in the vicinity of
clouds, Nx is increased by a factor of roughly 2.5 as expected
(see e.g. [68]). However, in absolute terms, the predomi-
nating scatter process is Mie scattering by cloud droplets as
shown in the last column.

6. Conclusions

The present paper introduces the Monte Carlo radiative
transfer model McArtim which is specifically designed for
UV/vis/near IR remote sensing applications. Central to the
McArtim code is to solve the integro-differential radiative
Carlo atmospheric radiative transfer model McArtim:
T (2011), doi:10.1016/j.jqsrt.2010.12.009
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Fig. 9. Same as Fig. 8 but for SZA=601 and different viewing azimuth angles and zenith angles.
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transfer equation (RTE) in terms of the so-called Neumann
series, the summands of which are identified with the
contributions of multiple scatter orders to the radiation
field. It is shown how the adjoint formulation of the RTE can
be utilized to calculate functionals of the radiation field.

By applying the Monte Carlo integration technique to
the Neumann series, the core algorithm of each Monte
Carlo RTM is found. The ray tracing method evolves from
drawing samples of the integrals in the Neumann series
and is at the same time the direct simulation of the photon
transport process. In detail, the ray tracing consists in
repeated simulation of the photon survival in extinction
(i.e. scattering or absorption) events, sampling of scatter
angles and free path lengths until the photon is absorbed or
leaves the atmosphere at the TOA. The resulting trajectory
is either an estimate of the radiation field in terms of the
Please cite this article as: Deutschmann T, et al. The Monte
Introduction and validation of Jacobians and 3D features. JQSR
collision density or, employing the adjoint RTE formula-
tion, an estimate of the so-called importance function
associated to the characteristics (position, field of view,
etc.) of a given detector.

Measurable radiometric quantities such as radiances,
light path integrals, heating rates, actinic fluxes and
Jacobians of these with respect to all relevant optical
parameters are calculated from an ensemble of trajectories
by local estimates and by the technique of dependent
sampling. A specific advantage of dependent sampling is
that Jacobians are simultaneously obtained from the
analysis of a single trajectory ensemble. A drawback of
this method is an increased variance of the calculated
quantities.

Predictions of McArtim are validated with, cf. (a) inter-
comparison of measured and modeled radiances for large
Carlo atmospheric radiative transfer model McArtim:
T (2011), doi:10.1016/j.jqsrt.2010.12.009
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Fig. 10. Effective number of scatter events for the RT scenarios shown in Fig. 8. First column: ground scatter events (s.e.), second column: Rayleigh s.e., third

panel column: aerosol s.e., last column: cloud s.e.
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SZA’s, the former being obtained from Limb observations of
a balloon-borne spectrometer deployed into the strato-
sphere at high latitudes in late summer, (b) inter-compar-
ison exercises of the I3RC project and (c) self-consistency
tests which then rely on the validity of radiances. Theses
validation exercises demonstrate that McArtim provides
unbiased and exact results while being versatile and
reasonably rapid in relevant RT applications.

Although Monte Carlo methods have a long tradition in
RT modeling and are developed well, there remain still
challenging tasks. For estimating Jacobians related to
optical properties of aerosols or clouds, an algorithm to
efficiently construct variance reduced estimates has to be
found. There are several variance reduction methods such
as the splitting technique or stratified sampling which are
aimed to be included in the code. Another shortcoming of
the present code is revealed in inter comparison exercises
with measurements at large SZAs suggesting that more
emphasis needs to be put on refraction and the Sun’s Center
to Limb darkening (CLD). In the current version of McArtim
exact predictions are restricted to SZA lower or equal 901.
Furthermore, in order to extend the applicability range in
future, the BRDF surface scattering model as well as a more
sophisticated treatment of the rotational Raman scattering
and, therewith, the simulation of polarization needs to be
implemented in the code.
Please cite this article as: Deutschmann T, et al. The Monte
Introduction and validation of Jacobians and 3D features. JQSR
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