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a b s t r a c t

We survey research on radiation propagation or ballistic particle motion through media

with randomly variable material density, and we investigate the topic with an emphasis

on very high spatial frequencies. Our new results are based on a specific variability model

consisting of a zero-mean Gaussian scaling noise riding on a constant value that is large

enough with respect to the amplitude of the noise to yield overwhelmingly non-negative

density. We first generalize known results about sub-exponential transmission from

regular functions, which are almost everywhere continuous, to merely ‘‘measurable’’

ones, which are almost everywhere discontinuous (akin to statistically stationary noises),

with positively correlated fluctuations. We then use the generalized measure-theoretic

formulation to address negatively correlated stochastic media without leaving the

framework of conventional (continuum-limit) transport theory. We thus resolve a

controversy about recent claims that only discrete-point process approaches can

accommodate negative correlations, i.e., anti-clustering of the material particles. We

obtain in this case the predicted super-exponential behavior, but it is rather weak.

Physically, and much like the alternative discrete-point process approach, the new model

applies most naturally to scales commensurate with the inter-particle distance in the

material, i.e., when the notion of particle density breaks down due to Poissonian—or

maybe not-so-Poissonian—number-count fluctuations occur in the sample volume. At

the same time, the noisy structure must prevail up to scales commensurate with the

mean-free-path to be of practical significance. Possible applications are discussed.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction, context, and overview

Although radiative transfer theory is highly developed
for uniform or slowly varying optical media, natural optical
media are often variable at all observable scales. Clouds are
a good example where in situ probing by aircraft show
highly variable extinction as well as liquid water content.
Being highly turbulent dynamical environments, the fluc-
tuations of an admixture such as condensed water particles
in clouds (� 10 s of mm in size) are expected over a huge
ll rights reserved.

: +1 818 393 4619.
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range of scales: down to the Kolmogorov dissipation scale (� a
few mm) and up to the cloud-system scale (� 10 s of km).
Somewhere in this range are the radiatively relevant scales
such as the mean-free-path, or e-folding distance, for solar
(thermal) radiation propagation between (emission,) scatter-
ing, absorption, or escape events in the transport process. As
contrived as they are, nuclear engineering systems (e.g.,
reactors) can also exhibit macroscopic cross-section variations
over a very wide range of scales. So wide as to challenge the
memory requirements and the related efficiency of the most
detailed computational transport models.

There is an obvious qualitative difference between these
two examples. A priori, cloud structure is inherently random
except maybe at the largest scales where, for instance, clouds
often exhibit strong gradients in the vertical. By contrast, we
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envision nuclear systems as carefully designed down to the
smallest detail. And then there are pebble-bed reactors, a
relatively new concept, where small (� 6 cm diameter)
spherical pellets are stacked randomly in a large vessel;
these pellets are themselves made of a graphite shell filled
with tiny (�1 mm diameter) spheres of fuel surrounded by
other materials.2 Here again, the scales of variability straddle
the neutron mean-free-paths of the various materials, includ-
ing the fluid between the pellets.

In short, transport media whose material properties can
only be described in practice by statistical methods are
playing increasingly important roles in atmospheric radia-
tive transfer (e.g., the role of clouds in the large-scale
radiative energy budget), in nuclear engineering (e.g.,
above-mentioned next-generation reactors or fractures in
shielding materials), in medical physics (e.g., dosimetry and
computed tomography), in astrophysics (e.g., convectively
unstable stars), and so on. If the 3D spatial structure of the
optical medium can only be described in probabilistic terms,
then one can only ask of the corresponding transport theory
to deliver domain-average quantities. Two broad classes of
solutions have emerged for such transport problems:
‘‘homogenization’’ and, broadly speaking, ‘‘alternate trans-
port theories.’’ In the former pursuit, one seeks ways of
redefining the material properties of the medium, as if it
were uniform at the (usually large) scales of interest, but in a
manner that accounts for the dominant effects of smaller
scale (usually unresolved) variability. In the later approach,
one arrives at new transport equations, to be solved
analytically or numerically.

Homogenization (a.k.a. the ‘‘effective medium’’
approach) is very attractive because it reduces the difficult
multi-dimensional problem to a much simpler problem for
a uniform medium, which has known solutions (at least in
1D, using slab geometry). For examples in the atmospheric
literature, see Davis et al. [1], Cahalan et al. [2,3], Cairns
et al. [4], and Petty [5]. For examples from nuclear engi-
neering, see Graziani [6] and Olsen et al. [7,8].

Although they pose new technical challenges, new
transport equations describing the stochastic transport
problem are generally a more realistic approach. A well-
known example is the theory of transport in Markovian
binary mixtures, which is expressed as a pair of coupled
integro-differential transport equations; it has been sur-
veyed in great depth by Pomraning [9], Byrne [10], and
Kassianov and Lane [11, in this Special Issue], respectively,
from the particle transport, radiative transfer (RT), and
broader perspectives. There are other such mean-field
transport theories, for instance, Stephens [12] reconsiders
the classic two-stream model in 1D RT in a manner that
incorporates some 3D RT phenomenology uncovered in his
numerical simulations [13]. As another example, Davis and
Marshak [14–16] have developed diffusion and transport
theories, where the particle free-path distributions have
power-law tails to represent the mean propagation kernel
for heterogeneous media.
2 See http://en.wikipedia.org/wiki/Pebble_bed_reactor, or http://

www.cd-adapco.com/press_room/case_studies/060118_pebblebed.html

for more information.
Between homogenization theories and alternative
transport equations, there is an intermediate approach to
transport in stochastic media, very popular in the atmo-
spheric community, is the independent pixel (or column)
approximation—the IPA (or ICA). Therein, one solves the
1D RT problem for given optical properties, but one or more
of these parameters are actually random variables with
given probability density functions (PDFs). Typically, the
optical depth of the medium is varied. In the IP(C)A, one
simply averages the outcome of the 1D RT computation
weighted by the known PDF. Although the concept goes at
least as far back as the 1972 report by Mullamaa et al. [17],
the terminology was introduced in the mid-1990’s [18,19].
The IP(C)A was used originally to derive closed-form
expressions, including one or more new parameters for
the variability, but more recently it has been implemented
numerically, particularly with global climate models in
mind [20–22].

There is an interesting and important question about
transport in random optical media that is more elementary
than all of the above solutions, which is simply to char-
acterize propagation between emission, scattering, absorp-
tion, and detection/escape events. Studies are on-going, for
instance, in chord-length distributions3 for media made of
closely packed disks or spheres [7,8]. We see this question
as one about the prevailing law of direct transmission,
which is closely related to the PDF for the free paths
covered by the transported particles. Imagining a (pulsed)
point source, how many particles are stopped near (early)
versus far (late)? The standard answer is: an exponential
distribution, the famous Bouguer–Lambert–Beer law in
radiometry. However, that answer, completely determined
by the mean-free-path (MFP), applies only to strictly
uniform media.

A recent series of publications addressing this funda-
mental issue have provoked some controversy about non-
exponential transmission laws, largely because of the
unconventional description of the propagation part of
transport problem in terms of ‘‘discrete-point process’’
theory rather than the traditional ‘‘continuum’’ theory
encapsulated in the linear Boltzmann equation. Introdu-
cing discrete-point process modeling into transport
through heterogeneous media, Kostinski [23] argued
strongly that the presence of spatial correlations in statis-

tically homogeneous media will invariably lead to sub-
exponential behavior in the law of direct transmission. His
findings were critiqued by Borovoi [24] who relied on
classic continuum theory. In his reply, Kostinski [25] insists
that the discrete-point approach is more fundamental and,
to rest his case, he claims that transport in negatively
correlated (a.k.a. ‘‘super-homogeneous’’) media can be
modeled by discrete-point methods but not by continuum
methods, pointing to a more detailed study by Shaw et al.
[26]. One of the present authors weighed in very strongly
favoring non-exponential mean transmission laws for
positively correlated media using mainstream/conti-
nuum-based radiation transport theory [15]. This leaves
3 These statistics are of immediate interest for stochastic RT in binary

Markovian media.



A.B. Davis, M.B. Mineev-Weinstein / Journal of Quantitative Spectroscopy & Radiative Transfer 112 (2011) 632–645634
the issue of negatively correlated media open to
debate—one that we resolve in the course of the present
investigation (cf. Section 5.2). We will present evidence
that the two approaches are, in this respect at least,
equivalent as long as the continuum notion of material
particle density is appropriately broadened.

While this somewhat technical controversy unfolds,
non-exponential transmission laws are finding their way
into mean-field transport theories driven by specific appli-
cations. For instance, Davis [16] constructs a new 1D
transport equation in integral form with anisotropic multi-
ple scattering and calls the theory ‘‘anomalous transport’’
since it leads to asymptotic behavior captured by anom-
alous diffusion theory [14,27]. This new transport theory
successfully explained then recent ground-based observa-
tions of time-domain RT in the Earth’s cloudy atmosphere
[28, and references therein]. As another example, Larsen
[29] proposes a ‘‘non-classical’’ transport equation in
integro-differential form that allows for non-exponential
transmission laws by introducing a form of spatial memory
between each scattering event. He furthermore derives by
way of a careful asymptotic analysis a homogenized (but
otherwise standard) diffusion theory that accounts for
deviations of the mean transmission law from the expo-
nential case; see also the paper by Larsen and Vasques [30]
in this Special Issue. A spatially anisotropic generalization
of this modeling framework has since been developed and
applied to transport in experimental nuclear reactors with
a pebble-bed core [31].

In the following section, we pose the general problem of
radiation transport in heterogeneous 3D media in integral
form, highlighting the key role of the transmission factor,
i.e., the propagation part of the linear transport kernel. In
Section 3, we survey previous results on non-exponential
transmission laws that follow directly from statistical
analysis of the propagation kernel. In Section 4, the adopted
spatial variability model is presented and its general
properties are described. In Section 5, we derive the
transmission laws for previously unexplored classes of
media in the model space, including cases where the largest
fluctuation amplitudes are at the highest frequencies, and
we discuss some ramifications. We draw our conclusions
and look into possible applications in Section 6.
4 Bi-directional reflection by boundary elements can in fact be

modeled as a special kind of scattering—the term in square brackets in

(1). So the integral equation in (1) is a quite general formulation of linear

transport problems.
5 This results from setting qv � 0, qbð~x ,~OÞ ¼ F0dð~O�~O0Þ on the

illuminated subset of M (i.e., f~x 2M; ~O0 � n̂ð~xÞo0g), and 0 elsewhere;

then once iterating (1) and (2), starting with I0 � qb.
2. 3D radiation transport: in integral formulation

Let Ið~x,~OÞ denote steady-state radiance at position ~x in
3D space propagating into direction ~O; its physical units are
W/m2/sr(/mm, as needed). In monochromatic 3D RT, or one-
group neutron transport, we seek to determine Ið~x,~OÞ in a
convex region M DR3 (boundary @M) where material
properties are defined by (i) the extinction coefficient sð~xÞ
for either scattering or absorption or, in the case of neutrons,
multiplication; (ii) the differential scattering cross-section
(per unit volume) dss=d~Oð~x; ~Ou-~OÞ. Moreover, we are
given the distributions of primary volume sources
ðqvð~x,~OÞ,~x 2MÞ and boundary sources (qbð~x,~OÞ, ~x 2 @M, ~O �
n̂ð~xÞo0 where n̂ð~xÞ is the outward normal to @M at ~x).

A convenient way of determining the linear transport
problem at hand is to use the integral equation, particularly
with numerical solutions in mind. It reads as

Ið~x,~OÞ ¼
Z s@Mð~x ,�~OÞ

0
e�
R su

0
sð~x�~OsuuÞ ds00

�

Z
4p

dss

d~O
ð~x�~Osu; ~Ou-~OÞIð~x�~Osu,~OuÞd~Ou

� �
dsu,þQ ð~x,~OÞ

ð1Þ

where s@Mð~x,�~OÞ is the distance along the upwind beam
f~x,�~Og from~x to its unique intersection with @M, assumed
for simplicity to be absorbing (as opposed to partially
reflective4). The integral source term denoted by Q ð~x,~OÞ in
the above can be computed from given volume- and
boundary-source distributions:

Q ð~x,~OÞ ¼
Z s@Mð~x ,�~OÞ

0
qvð~x�~OsÞe�

R s

0
sð~x�~OsuÞ dsu ds

þqbð~x�
~Os@Mð~x,�~OÞÞe�

R s@M ð~x ,�~O Þ

0
sð~x�~OsÞ ds: ð2Þ

In atmospheric radiation transport, M is most often taken
to be a plane-parallel slab f~x 2 R3;0ozoLgwhere L is the
slab thickness; qvð~x,~OÞ would be used to model isotropic

thermal sources inside the medium while qbð~x,~OÞwould be
used to specify isotropic thermal emission by the under-
lying surface. In the solar spectrum, qbð~x,~OÞwould capture
the unidirectional solar irradiation at the top of the medium
while qv � 0. Alternatively, one can usefully limit Ið~x,~OÞ to
once-or-more scattered radiation; boundary sources then
vanish, and one uses the anisotropic volume source term5

qvð~x,~OÞ ¼ F0
dss

d~O
ð~x; ~O0-~OÞe�

R s@M ð~x ,�~O0 Þ

0
sð~x�~O0sÞds, ð3Þ

where F0 is the solar constant at the wavelength of interest
(in W=m2=mm) and ~O0 is the direction of incidence of the
solar beam.

For the present study, the important fact about (1)–(3) is
the recurring appearance of

Tð~x0,~O; sÞ ¼ e�
R s

0
sð~x0þ

~OsuÞ dsu, ð4Þ

which is the local law of direct transmission from ~x0

to ~x1 ¼ ~x0þ
~Os, i.e., over distance s¼ J~x1�~x0J along ~O ¼

ð~x1�~x0Þ=J~x1�~x0J. From a Monte Carlo standpoint, this is
the cumulative probability for the random distance from~x0

to the next scattering or absorption event along ~O to exceed
s. In kinetic-theoretical terms, it is the probability of
particles leaving ~x0 to reach ~x1 uncollided.

In stochastic media, Tð~x0,~O; sÞ or, equivalently,

Tð~x0,~x1Þ ¼ e�sð~x0 ,~x1ÞJ~x1�~x0J,sð~x0,~x1Þ ¼

Z 1

0
sðu~x0þð1�uÞ~x1Þdu

ð5Þ

is a critically important non-local quantity. The segment-
averaged extinction sð~x0,~x1Þ, hence Tð~x0,~x1Þ, are random
variables. We are therefore keenly interested in the sta-
tistical properties of Tð~x0,~x1Þ. This is indeed the crucial
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propagation part of the linear transport kernel in (1) that
remains even when the scattering is everywhere isotropic,
as it is sometimes assumed in neutron transport theory for
simplicity (i.e., dss=d~Oð~x; ~Ou-~OÞ � ssð~xÞ=4p).

3. Mean transmission law: exponential or not?

We will focus on the ensemble-average value of
Tð~x0,~x1Þ, which we denote /TðsÞS, letting / � � �S denote
ensemble averages. This is a spatial statistic that will
depend strongly on the nature of the correlations in the
random optical medium. At least in statistically homoge-
neous and isotropic media, it will depend only on the
transport distance s¼ J~x1�~x0J, an assumption we will
make for simplicity in the present study.6

3.1. The case of functions

Davis and Marshak [15] investigated the properties of
/TðsÞS under very general assumptions about the varia-
bility ofsð~xÞ. In essence, they only assumed that the natural
notation ‘‘sð~xÞ’’ makes mathematical sense, in other
words, that s is a well-defined function of position ~x. It
need not be a very well-behaved function since all that is
required is a degree of continuity. In particular, differentia-
bility is not required. This is a good thing since we will see
further on that continuous but non-differentiable functions
are well-suited for describing the turbulent structure of
real clouds, as observed by airborne in situ probes [33–36].

Elementary kinetic theory tells us thats is the density of
material particles in the media times their total (scatter-
ing+absorption) microscopic cross-section. Assuming all
the material and transported particles have the same
microscopic cross-sections, the spatial variability of s
just reflects that of the material density.7 Now, density is
a continuum notion that requires a specific connection
between finite numbers of particles in varying volumes
around ~x. Specifically, we naively require that

srð~xÞ ¼
1

4pr3=3

ZZZ
J~x u�~xJo r

sð~xuÞd~xu ð6Þ

does not depend on r, if small enough, and we denote this
value s0ð~xÞ. This should hold at least to within the
Poissonian8 fluctuations to be expected when the volume’s
dimensions become commensurate with the inter-particle
distance for the material of interest. In the same spirit, we
ask that

sð~x,~xþ~OrÞ ¼
1

r

Z r

0
sð~xþ~OsÞds� s0ð~xÞ ð7Þ

for any choice of ~O when r is small enough. Davis and
6 Fundamentally, this reduces to the initial value problem for a

stochastic ODE with multiplicative noise: dT=ds¼�sðsÞT , sZ0, T(0) = 1;

see [32] for many examples and applications.
7 If cross-sections vary from particle to particle (as, e.g., cloud

particles with polydisperse sizes), then one uses the cross-section

averaged over the particle population. The assumption that such an

average is always meaningful has, however, been questioned, particularly

when it comes to the largest particles because they are so rare [37].
8 As discussed elsewhere in this article, Kostinski [23] questions this

assumption and describes the ramifications for photon propagation.
Marshak called this presumably benign property of the
medium ‘‘one-point scale-independence.’’

Three general results for one-point scale-independent
media were then derived in [15]:
�
 The mean direct transmission law/TðsÞS is exponential
only if sð~xÞ is uniform in M. This is the non-trivial
converse of the elementary result showing that, if s is
uniform, then TðsÞ ¼ expð�ssÞ.

�
 Recalling that the ensemble-average free-path distribu-

tion is pðsÞ ¼ jd/TS=dsj, the actual (ensemble-average)
MFP given by /TðsÞS; specifically, we compute ‘¼

EðsÞ ¼
R1

0 spðsÞds and find that ‘ is always larger than
1=/sS, the logical prediction from the exponential
distribution when one only knows the mean extinction.
Conversely, ‘¼ 1=/sS only in uniform media.

�
 /TðsÞS is always sub-exponential in the sense that, if

one uses the above MFP ‘ to predict higher order
moments EðsqÞ ¼

R1
0 sqpðsÞds for q = 2,3,y, then the

exponential assumption yields an underestimate. In
other words, EðsqÞZq!‘q for q41, where ‘‘=’’ applies
only when the medium is uniform.
This last item is fundamentally a statement about the tail of
the free-path distribution, that is, how /TðsÞS decays as
s-1. All of the above results follow from Jensen’s inequal-
ity [38] as applied in various ways to convex functions of s
and of s.
3.2. Extension to measures

The present study is about relaxing the assumption of
one-point scale-independence. This generalization is pos-
sible, but the price is that we can no longer think of s as a
regular function, that is, with some form of continuity
almost everywhere, hence has a well-defined numerical
value at almost every point in M. Since it only appears
under line integrals in (1) and (2), we can safely state thats
only needs to be a measurable function, or simply a
measure on M.

A prime example of a measure is Dirac’s delta ‘‘function’’
dðxÞ, actually a distribution in the sense of Schwartz [39]. It
is generally described as being 0 everywhere except at x = 0
where it is1yin such as way that

R þ1
�1

dðxÞdx¼ 1. More
rigorous definitions do not attempt to write it outside of an
integral:

R þ1
�1

dðx�yÞf ðxÞdx¼ f ðyÞ, for a vast class of test
functions f. Physicists sometimes define dðxÞ as a singular
limit of vanishingly narrow functions (e.g., Gaussians or
piecewise-constant functions) that integrate to unity.
Mathematicians tend to use measure-theoretic language:R b

a dðxÞdx¼ 1 if ao0ob, and 0 otherwise.
There have already been investigations of RT in very

sparse optical media represented by measures that
patently violate the one-point scale-invariance property
in (7). In media with a fractal internal structure, the coarse-
scale extinction srð~xÞ in (6) will vary, presumably like the
estimate of the local mean material density, as r�3það~xÞ

where að~xÞ is the prevailing ‘‘regularity’’ exponent varying
between 0 (e.g., when sð~xÞpdð~xÞ) and 3 (an exponent-based
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statement of the one-point scale-invariance property as used,
e.g., in turbulence theory [40]).

In this context, Davis et al. [41] obtained an analytical
expression for the domain-average direct transmission
through a deterministic 2D fractal, the Sierpiński sieve
[42], in the form of a power-law in mean optical depth.
Knyazikhin et al. [43] independently studied the propaga-
tion of light through fractal structures representative of
vegetation canopies; they modeled the ray-canopy inter-
section as a Cantor-like set [42], again finding power-law
statistics for the probability of uncollided survival. This
finding was later interpreted as a ‘‘missing solution’’ [44], a
process not captured by the standard RT model where the
canopy is likened to a turbid medium. Beyond these 0th-
order scattering studies, Watson et al. [45] have recently
examined single scattering responses.

Multiple scattering in sparse fractal media was
addressed two decades ago by Lovejoy, Gabriel, Davis
et al. [1,46,47], using both analytical and computational
techniques, with terrestrial clouds in mind. In the absence
of absorption, they found that total (direct+diffuse) trans-
mission goes as a power-law in mean optical depth
ðT � 1=tnÞ that is weaker ðno1Þ than for uniform media
(where n¼ 1). This result, based on a deterministic mono-
fractal model, was soon generalized to random multifractal
media with log-normal statistics [48]. Multiple scattering
studies in such sparse stochastic media are ongoing:
Lovejoy et al. [49] recently examined log-Lévy multifractals
in considerable detail.

Finally, as reminded further on, the internal structure of
real clouds (as defined by the condensed water density in
g/kg as well as for extinction) is akin to the fluctuations of
an admixture in a turbulent flow. In particular, k�5/3

wavenumber spectra are observed, whereas sparse fractal
distributions have much smaller spectral exponents (k�b

with 0rbo1). Consequently, cloudy airmasses are one-
point scale-invariant optical media, even though their
boundaries are notoriously fractal [50,51]. Nonetheless,
the largest cloud droplets are found, as one intuitively
expects, in increasingly sparse volumes as the radius
increases. Based on extensive cloud microphysical data
collected by aircraft along linear transects through clouds,
there is empirical evidence that the largest particles tend
to cluster more than expected for random Poissonian
fluctuations [37]. More to the present point, there are
non-negligible radiative ramifications of this clustering,
particularly for bulk absorption in the cloud [52].

In the remainder of this paper, we extend RT (starting
with the propagation kernel) to yet another class of
measures that are akin to different flavors of noise. For
simplicity, and leading to insights from analytical results,
these random measures are assumed to have Gaussian one-
point statistics and monofractal scaling properties, but this
is not essential to the conclusions.

4. Adopted variability model

In the remainder, the extinction field is defined as a
random measure denoted ‘‘sðxÞdx’’ with the understand-
ing that, under general circumstances, the two terms must
be kept together; alternatively, we use the Stieltjes
notation ‘‘dtðxÞ’’ for the corresponding element of optical

distance. Leaving a completely general approach for future
work, we concentrate here on a representative and relevant
class of stochastic optical media that has two components:
(1) a regular, indeed constant, part /sS that is strictly
positive, and (2) a noise that we take as Gaussian with zero
mean and fluctuations that are scale-invariant in the sense
that their Fourier amplitudes follow a power-law trend in
wavenumber k. We recall that, in general, only definite
integrals of dtðxÞ have well-defined numerical values for
this type of fluctuating medium. In other words, we can
only evaluate quantities such as

tðx0,x1Þ ¼

Z x1

x0

dtðxÞ, ð8Þ

that we interpret in the sense of Lebesgue [53], as well as
Fourier integrals. In the present context, we identify this
random variable with optical distance

R x1

x0
sðxÞdx that

appears multiple times in the integral transport equation
set (1)–(3) in a notation that is usually understood as a
standard Riemann integral.

4.1. Formal definition in Fourier space

The model is best defined in Fourier space where,
because of (7), we can work in 1D without loss of generality.
Letting k 2 R denote wavenumber, the energy spectrum of
the 1D measures is also a measure. In the present model, it
is defined (up to a multiplicative factor) as

EsðkÞdk¼ jŝðkÞdkj2 � jkj�b dk ð9Þ

for ka0, a value we deal with further on. The spectral
exponent b is usually assumed positive, but there is no
fundamental reason it cannot be negative as well. To keep
variance ð ¼ 2

R1
0þ EsðkÞdkÞ finite, k in (9) will have at least

one cutoff value: kL ¼ 1=L40 (where L is the finite outer
scale), kNyq ¼ 1=2Dxo1 (Nyquist wavenumber, where Dx

is the finite inner scale), or both (in which case we assume
the number of samples L=Dx¼ 2kN=kLb1). At a minimum,
kL40 if bZ1 to avoid the so-called ‘‘infrared’’ catastrophe
(variance -1) and/or kNyqo1 if br1 to avoid the so-
called ‘‘ultraviolet’’ catastrophe. In numerical implementa-
tions, both divergences are naturally avoided since the
number of spatial samples Npts ¼ L=Dx will be large but
finite.

Letting i¼
ffiffiffiffiffiffiffi
�1
p

, we thus assume

ŝðkÞdk¼ F½s	dk¼ dk

Z þ1
�1

eþ ikx dtðxÞ

¼ constant � k�b=2gkeifk

ffiffiffiffiffiffi
dk
p

ð10Þ

for k40, and ŝð0Þdk¼/sSdk; for ko0, we take the
complex conjugate of (10) to ensure a real-valued inverse
Fourier transform. In the above, gk denotes a zero-mean/
unit-variance Gaussian random amplitude N(0,1) for the
Fourier mode. We have introduced here the notation

Nðm,std:dev:Þ,std:dev:¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
variance
p

for a Gaussian random variable with mean and standard
deviation in the 1st and 2nd arguments, respectively, and
fk is a uniform random phase in ½0,2pÞ. The exponent b
defines the scaling property, with qualitative ramifications
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discussed in the next subsection, while the constant in (10)
is an overall variability strength parameter that will be
specified implicitly further on, bearing in mind the follow-
ing constraint. In the present application, we will tune the
maximum recommended value for the constant in (10) as a
function of /sS and b in such a way that keeps the definite
integrals of

dtðxÞ ¼ sðxÞdx¼ F�1
½ŝ	dx¼

dx

2p

Z þ1
�1

e�ikxŝðkÞdk ð11Þ

in (8) non-negative for a vast majority of possible positions
x, integration domains, and realizations of gkeifk ðk40Þ.
Within the Gaussian framework, one cannot ask for more.

One practical algorithm for numerical implementations
(where dx¼Dx and dk = 1/L) is to decide on a value for Npts,
then fix the variability b in (10), leaving the constant as
unity. Then, one performs the inverse (fast) Fourier trans-
form in (11) assuming ŝð0Þdk¼ 0. Then seek the minimum
of the outcome sðxÞDx, a necessarily negative number.
Subtracting and then dividing the outcome by this number
yields an acceptable realization of sðxÞDx normalized by its
mean/sðxÞDxS, which is itself independent of x (statistical
homogeneity). However, this last procedure is only for
generating illustrations since it couples two free para-
meters of the model, the mean and amplitude of the
fluctuations. When both are set independently, at least
some realizations will have negative values. This is neces-
sary to generate truly Gaussian statistics.

Fig. 1 shows one realization each for the choices b¼�1,
0, 1, 5/3, and 3 using the above algorithm for Npts = 1024.
The same sequence of Gaussian random variable gk and
random phases fk was used for k40 in (10) with all
selected values of b; only the Fourier mode amplitudes
were changed according to (9). That explains the similarity
in overall shape of the fields with the largest b values.

4.2. Nomenclature

Beyond the large-scale mean value, the adopted model
for the extinction field in (10) and (11) has two variability
parameters: (1) a multiplicative prefactor that controls the
amplitude of the 1-point Gaussian PDF; (2) spectral scaling
exponent b that determines 2-point (spatial correlation)
statistics. Qualitative differences occur as b is varied, from
large to small values:
1.
 for bZ3, every realization of sðxÞ is a random but
smooth (almost everywhere differentiable) function
with, in particular, no discontinuities (otherwise b
jumps to 2);
2.
 for 2obo3, s is a fractional Brownian motion (fBm)
with ‘‘persistence’’ in the sense that /½sðxþ2rÞ�

sðxþrÞ	½sðxþrÞ�sðxÞ	S40 for any two successive
increments at any scale r [42];
3.
 forb¼ 2,s is the spatial counterpart of classic Brownian
motion (Bm, a.k.a. Weiner–Lévy process), where suc-
cessive increments at any scale are independent, i.e.,
/½sðxþ2rÞ�sðxþrÞ	½sðxþrÞ�sðxÞ	S¼ 0;
4.
 for 1obo2, s is a fBm with ‘‘anti-persistence’’ in the
sense that /½sðxþ2rÞ�sðxþrÞ	½sðxþrÞ�sðxÞ	So0 for
two successive increments at scale r, a scenario of
tremendous interest in turbulent media [54] such as
clouds;
5.
 for b¼ 1, we have the special case of spatial ‘‘1/f’’ (a.k.a.
‘‘red’’) noise, borrowing the traditional time-domain
notation, that is on the cusp between the above random
fields with diverging variance due to large-r/small-k

behavior (the infrared catastrophe) and the following
ones where the divergence is at small-r/large-k’s (the
ultraviolet catastrophe);
6.
 for 0obo1, s is a field of ‘‘pink’’ noise that generates
persistent fBm by integration (in practice, a division by
ik in Fourier space);
7.
 for b¼ 0, s is a field of ‘‘white’’ noise that generates
standard Bm by integration;
8.
 for�1obo0, s is a field of ‘‘blue’’ noise that generates
anti-persistent fBm by integration.

The noted connection, via definite integrals, between the
stationary Gaussian scaling noises and the non-stationary
fBm processes proves crucial in the following analysis of
systematic transport effects.

From a stochastic modeling perspective, the b¼ 1 case is a
critical threshold between statistically stationary fields whenb
is smaller and non-stationary ones for b larger than unity [42].
A visual distinction between the stationary processes in the top
panels and the non-stationary ones at the bottom is the density
of zero/mean-level crossings in Fig. 1: they are very frequent
for stationary cases, quite rare for non-stationary ones. There-
fore, from a practical data analysis perspective, a sequential
sample of a stationary process will quickly converge to their
one-point statistics such as mean, variance, etc., while a non-
stationary one can take forever in the sense that one may run
out of data before even low-order moments have stabilized;
see illustration with cloud probe data in [34].

One should actually talk about statistically homogeneous

random functions since they unfold in space rather than time,
but we will carry on with this wide-spread abuse of the time-
domain language. Also throughout this study, we think of
stationarity in the ‘‘broad’’ sense, meaning based solely on
1st- and 2nd-order moments and spatial statistics.

4.3. Important statistical properties

The Wiener–Khinchin theorem states that, for any broad-
sense stationary process f(x), energy spectrum Ef(k) and
autocorrelation function form a Fourier transform pair [55,
among others]. The autocorrelation function is defined as

Gf ðrÞ ¼/½f ðxþrÞ�/fS	½f ðxÞ�/fS	S¼/f ðxþrÞf ðxÞS�/fS2,

ð12Þ

independently of x since f is a stationary random process, and
we note that Gf ð0Þ ¼/½f ðxÞ�/fS	2S is the 1-point variance.
For extinction fields based on scaling stationary noises, this
tells us that a wavenumber spectrum with a power-law decay
in 0obo1 leads to a power-law autocorrelation function

GsðrÞ � r�g, ð13Þ

where

g¼ 1�b, ð14Þ

so we also have 0ogo1.



Blue

Red

Brown (anti-persistent)

Quasi-smooth (almost differentiable)
Fig. 1. Simulated examples of extinction transects sðxÞDx through random optical media with power-law wavenumber spectra (1024 samples, in arbitrary

units, withDx¼ 1); more precisely, for the top three cases, we plotsðxÞDx using a 1D counterpart of (7). From top to bottom:b¼�1, 0, 1, 5/3, 3; respectively:

blue, white, red, and brown noises, followed by an almost everywhere differentiable function. Eq. (11) was used to generate these fields by inverse fast

Fourier transformation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

9 In the fractal literature, where physical-space methods are often

favored, one often sees the converse: b is given by 2Hbþ1, e.g.,

Mandelbrot [42].
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The limit b-0þ , hence g-1�, leads to the well-known
case of white noise where the Wiener–Khinchin theorem
gives us dðrÞ on the r.-h. side of (12): white noise is indeed
d�correlated. The limit b-1�, hence g-0þ , leads to a
GsðrÞ that does not decay with distance r, thus marking
passage into the realm of random functions with ‘‘long-
range’’ memory, that is, any realization of sðxÞ with b41.

The Wiener–Khinchin theorem for non-stationary pro-
cesses, but with stationary increments, tells us the energy
spectrum and the (2nd-order) structure function form a
Fourier transform pair [56, among others]. In general, the q

th-order structure function is defined as

SFf ðq,rÞ ¼/½f ðxþrÞ�f ðxÞ	qS, ð15Þ

independently of x since f has stationary increments, also
known as the variogram. We note that SFf (2,r) = 2[Gf (0)�
Gf (r)] in the case of broad-sense stationary processes. For
extinction fields based on scaling non-stationary processes,
Wiener–Khinchin tells us that a wavenumber spectrum with
a power-law decay in 1obo3 leads to a 2nd-order structure
function

SFsð2,rÞ � r2Hb , ð16Þ

where9

Hb ¼
b�1

2
ð17Þ
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is known as the Hurst exponent [42]. We therefore have
0oHbo1. We note that, in this ð1obo3Þ regime, sðxÞ is
a valid notation since it is a regular function that is at least
stochastically continuous. In other words, we have
SFsð2,rÞ-0 when r-0.

As anticipated above, we see that the limit b-3 (hence
Hb-1) leads to smooth/differentiable behavior for sðxÞ,
specifically, jsðxþrÞ�sðxÞj � r at typical (if not all) points.
We also note that (15) and (16) can be combined to show
that

/½sðxþ2rÞ�sðxþrÞ	½sðxþrÞ�sðxÞ	S
¼ SFsð2,2rÞ=2�2SFsð2,rÞ � ð22Hb�1

�1Þ � r2Hb : ð18Þ

This justifies the sign convention used in Section 4.2 to
describe the correlations between two successive incre-
ments in sðxÞ at scale r.

Finally, the statistical property expressed in (15) and
(16) has a local version:

jsðxþrÞ�sðxÞj � rhðxÞ, ð19Þ

where h(x) is the local regularity (a.k.a. Hölder) exponent
[40]. From a multi-resolution analysis perspective [57], we
see that (7) is in essence a local constraint on the projection
of sðxÞ onto the so-called ‘‘scaling’’ function (a local coarse

value at scale r). By the same token, (19) is a constraint on
the projection of sðxÞ onto the so-called ‘‘wavelet’’ function
(local detail at scale r). It is clear that, for one-point scale-
independence (a coarsening property) to prevail, we need
the detailed behavior to be characterized by hðxÞ40. In
contrast, any discontinuity at x leads to hðxÞr0.

In the remainder of this paper, we are concerned only
with noises, br1 (cases 6–8 in Section 4.2). All cases with
b41 have continuity and were treated by Davis and
Marshak [15]. However, we will exploit the correspon-
dence (through Lebesgue integration) between a noise
characterized by jbjr1 and a fBm with a spectral exponent
bþ2, hence a Hurst exponent Hbþ2 ¼ ðbþ1Þ=2 from (17).

5. Mean transmission laws for unexplored model space

5.1. Media represented by red, pink and white noises

ð0rbr1Þ

We are first interested in computing the mean trans-
mission law10

/Tðx0,x1ÞS¼/exp½�tðx0,x1Þ	S, ð20Þ

from (8), as a function of propagation distance s¼ jx1�x0j

for the above class of models based on scaling noises,
but only when 0rbr1. Equivalently, we assume 1=2r
Hbþ2 ¼ ðbþ1Þ=2r1 in (17) for the associated Brownian
motion ðb¼ 0Þ or persistent fBm ð0obo1Þ. This is
10 There is a non-random spectral analog of computing average values

of e�tl , where l is wavelength, over a spectral interval. In some spectral

regions of atmospheric interest, tl can vary so fast with n that Riemann

integration is not an option. This is due to spectrally dense highly

quantized molecular absorption features. ‘‘Band model’’ approaches to

this problem are, in essence, an implementation of Lebesgue integration

theory; see, for instance, [58]. The energy dependence of nuclear cross-

sections has similarly unwieldy behavior in resonance regions, and the

practical solution for transport is the same.
an immediate extension of Davis and Marshak’s 2004
paper [15] on 3D optical media with b41 in our present
notation.11

Fig. 2 shows three fields for one realization. In the top panel,
we see sðxÞ as in the middle panel of Fig. 1 but a different
realization of the red noise ðb¼ 1Þ case, this time normalized
by /sS. The value of the constant in (10) is chose close to the
maximum value for the given /sS and b. Consequently,
the most extreme negative fluctuation of sðxÞDx is � 0. The
corresponding tð0,xÞ is plotted in the middle panel for the case
where /tð0,LÞS¼/sSL¼ 5. Finally, in the bottom panel, we
have T(0,x), the quantity that is actually averaged to form
/TðsÞS�/Tð0,xÞSjx ¼ s by stationarity.

More specifically, we wish to evaluate

/TðsÞS¼/e�tSðsÞ ¼
Z 1

0
e�tPrft,dtjsg, ð21Þ

where Prft,dtjsg is the probability law for the random
variable t in (8) and (20) for fixed s, viewed here as a fixed
parameter. We now note that the definite integral tðx0,x1Þ

of scaling noise is simply an increment of the associated
fBm, and we know what its distribution is. It is normally
distributed with mean value /sSs and variance given by
SFsð2,sÞ in (15) and (16). For specificity, we will write

SFsð2,sÞ ¼ C2
s � ð/sSsÞ2H : ð22Þ

Here, and in the remainder of the paper, 2H is short for
2Hbþ2 ¼ bþ1 from (17). The non-dimensional parameter
C2
s is related to the constant in (10), recalling that its

maximum value is determined by the values selected for
/sS and b (equivalently, H). In short, we have

tðx0,x1Þ ¼
d

Nð/sSs,Csð/sSsÞHÞ, ð23Þ

meaning ‘‘equal in distribution.’’ As anticipated, we imme-
diately see that this model of optical variability is some-
what flawed because the support of a Gaussian is all of R
while tðx0,x1Þ is necessarily positive on physical grounds.
With this assumption about tðx0,x1Þ, T(x0,x1) is a log-
normal random variable, and we will have to mitigate
the unphysical excursions to values in excess of unity.

Conveniently, we know how to compute the character-
istic function of a Gaussian random variable, namely,

/eþ ixNðm,
ffiffi
v
p

ÞS¼
Z þ1
�1

e�ðN�mÞ
2=2vffiffiffiffiffiffiffiffiffi

2pv
p expð�ixNÞdN

¼ expð�imx�vx2=2Þ: ð24Þ

We use this as an approximate estimation of (21), the
approximation being an extension of the integration limits
from ð0,1Þ to ð�1,þ1Þ. As stated earlier, the impact of
this extension to physically spurious negative values of t is
small if the assumed mean extinction /sS is large enough,
in view of the variability amplitude parameter Cs. At any
rate, we can control this adverse impact of the simplifying
assumption of Gaussian variability.
11 Davis and Marshak [15] in fact already treated (in physical space,

using a finite inner scale) the b¼ 0 case of white noise/d�correlated

optical media, but this was just to provide a counterexample to their

required one-point scale-independence property.
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Fig. 2. Top: Another realization of the red noise ðb¼ 1,H¼ 0Þ case in Fig. 1, middle panel; here, we plotsðxÞ=/sS versus sample position x running from 0 to

L = 1024. Middle: Optical distance tð0,xÞ from (8) versus x, assuming that /tð0,LÞS¼/sSL¼ 5. Bottom: Direct transmittance T(0,x), one element from the

ensemble average in (20), versus x. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Setting x¼ 7 i in (24), with m¼/sSs and v¼ ðCsmÞ2H ,
we obtain

/TðsÞS¼/e�tSðsÞ � exp½�/sSsþðC2
s=2Þ � ð/sSsÞ2H

	: ð25Þ

This approximation will remain valid as long as /sS is
large enough (equivalently, Cs is small enough) that we can
find a useful range for the transport distance s where
/TSðsÞr1 and d/TS=dso0.

The special case of d�correlated fluctuating media with
a Gaussian PDF is retrieved for H = 1/2, hence

/TðsÞS� exp½�ð1�C2
s=2Þ �/sSs	: ð26Þ

As noted by Davis and Marshak [15], there is an effective
(‘‘homogenized’’) value of s, smaller than the mean by a
relative correction factor of C2

s=2 (which should obviously
not exceed unity, hence Cso

ffiffiffi
2
p

). This accounts for the raw
variability in complete absence of spatial correlations. The
fact that the homogenization is an exact result is unique to
the Gaussian model. Others [19,59,60, etc.] have investi-
gated /e�tS without any consideration of spatial correla-
tions but using appropriately non-Gaussian PDFs for t; they
have invariably found nonlinear deviations (consistent
with Jensen’s inequality) to what would equate here
with the mean trend /sSs.

Otherwise, for Ha1=2, we find a positive correction
term to �/sSs for ln/TðsÞS: C2

sð/sSsÞ2H=2, with 2H41.
This extends to pink-noise media Davis and Marshak’s
finding of sub-exponential transmission laws for what is
denoted here as ‘‘b41’’ cases. In summary, one obtains
sub-exponential tails for any b40 and exponential ones
when b¼ 0, as well as when C2

s ¼ 0.
We note that when H41=2, the correction term in s2H

will eventually grow larger in magnitude than the pre-
sumably dominant term,�/sSs; the transport distance to
this turn-around in /TðsÞS is

s% ¼
1=/sS

ðC2
sHÞ1=ð2H�1Þ

, ð27Þ

where the numerator is the estimated MFP in the absence
of variability. In reality, we never expect the derivative of
/TðsÞS to vanish at finite s—let alone start increasing with s

and eventually exceed unity. This is clearly an artifact of the
Gaussian assumption that becomes manifest at large
values of s: persistent fluctuations of t into negative values.
In practice, we would never apply the model to such high
values of s and/or Cs. Specifically, we require for this regime
that

ðC2
sHÞ1=ð2H�1Þ

51, ð28Þ

and also that s5s%, thus maximized in (27).



Fig. 3. Mean transmission laws/TðsÞS for stochastic media modeled with

Gaussian white-, pink-, and blue noises from (25) are compared to a

uniform media with the same (mean) extinction. Variability amplitude

parameter C2
s is either 0 or 1/2; in the latter case, the Hurst exponent H of

the associated fBm is set to 1/4 (blue noise), 1/2 (white noise), and 3/4

(pink noise).
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5.2. Media represented by blue noises ð�1obo0Þ

The above computation of /TðsÞS for 1=2rHo1
ð0rbo1Þ carries over wholesale to 0oHo1=2 ð�1o
bo0Þ; only the analysis of the results changes qualita-
tively. The fact that we no longer have a straightforward
Weiner–Khinchin connection between spectral and phy-
sical-space statistics, as in (12)–(14), or in (15)–(17), is not
troublesome. We simply apply (25) to blue-noise media
where the high-frequency fluctuations not only lead to an
ultraviolet catastrophe but contain increasingly more
power as k increases.

This time, the correction term in s2H exceeds in magni-
tude the presumably dominant term�/sSs in ln/TðsÞS at
very small values of s, specifically, when

sos0 ¼
ðC2

s=2Þ1=ð1�2HÞ

/sS : ð29Þ

Here again, we of course never expect /TðsÞS to exceed
unity in reality. This is just another artifact of the ad hoc
Gaussian assumption. However, in sharp contrast with the
H41=2 case, the fluctuations of t into negative values
become manifest at the smallest values of s. This, in turn, is
an interesting consequence of the negative spatial correla-
tions in blue noise that translates to negative correlations
noted previously in successive increments of the associated
fBm, cf. (18). Undesirable artifacts of the Gaussian varia-
bility model can be suppressed in a numerical implemen-
tation of the present model, for any value of H, by taking
tðx0,x1Þ ¼maxf0,

R x1

x0
dtðxÞg for every realization of the

noises. Otherwise, we require in this regime that

ðC2
s=2Þ1=ð1�2HÞ

51, ð30Þ

and also that sbs0, thus minimized in (29).
In this previously unexplored regime, the asymptotic

(large s) behavior of /TðsÞS is the standard prediction of
Beer’s law (approached algebraically from above):

/TðsÞS� expð�/sSsÞ � ½1þOðs�1þ2HÞ	: ð31Þ

Shaw et al. [26] predict super-exponential behavior based
on a discrete-point process analysis of scenarios where the
material particles obstructing the flow of radiation are anti-
clustered, i.e., they have negative (repelling) spatial corre-
lations. Our continuum-based approach leads to the same
conclusion, although the deviation from exponential decay
is weak in the present model.

Now, one can also use the white-noise case in (26) as a
benchmark to assess the effects of spatial correlations. In
this case, we see that the negatively correlated noises lead
for all practical purposes to exponential behavior, but
modified from an extinction of /sS½1�C2

s=2	 to the larger

value /sS. The key Fig. 3 in Shaw et al.’s paper illustrates
their numerical simulations of radiation propagation in
various realizations of random media generated with a
specific rule for enforcing negatively correlated particle
positions, at least at short distances. Rather than a clear-cut
super-exponential per se, i.e., a qualitatively different
decay rate (such as e�að/sSsÞb with a40 and bo1), Shaw
et al.’s Fig. 3 shows what seems to be a modified expo-
nential trend in /TðsÞS with a steeper slope in log-linear
axes than predicted by their version of Beer’s law, which we
identify with the white-noise case.

At any rate, the present case study establishes that
negatively correlated heterogeneous optical media can be
handled with conventional RT, albeit at the cost of extending
it from regular to merely measurable functions (followed by
a restriction to a special, but representative, class of such
measures). This contradicts speculation by Kostinski, Shaw,
and Lanterman [23,25,26] that only discrete-point process
approaches are general enough to accommodate such
‘‘super-homogeneous’’ media where distances between
the material’s particles are on average larger than predicted
by a Poissonian distribution. However, if the two approaches
to particle/radiation transport are in fact equivalent, as the
evidence presented here seems to show, then both frame-
works are enriched by the existence of the alternate one.

5.3. Summary and mitigation of Gaussian artifacts

Fig. 3 summarizes our findings in a log-linear plot of
/TðsÞS versus /sSs, ranging from 0 to 2. We illustrate
cases where Cs ¼ 0, yielding the standard (uniform med-
ium) model, and where Cs ¼ 1=

ffiffiffi
2
p

. In the latter case, the
Hurst exponent H of the associated fBm is taken to be 1/4,
1/2, 3/4, but /Tð1=/sSÞS¼ 1=e5=4 � 0:47, irrespective of
H. We see that /TðsÞS4e�/sSs in all cases for all s40. We
note the modified exponential behavior predicted in (26)
for H = 1/2, and by others (using various arguments) for
uncorrelated fluctuations. The sub-exponential trend for
H = 3/2 is clearly visible in this case where /sSs% in (27) is
ð8=3Þ2 � 7:1, i.e., appropriately off the chart. Finally, we
notice the super-exponential behavior when H = 1/4;
specifically, ln/TðsÞS is a concave function of s, albeit
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rather weakly concave in the physically meaningful regime
where sbs1 in (29), which is only 1=16� 0:06 of 1=/sS
(the MFP when Cs ¼ 0) in this example.

The Gaussian artifacts, one of which is clearly visible in
Fig. 3, can be mitigated if necessary—in particular, for any
future application of the model. The constraints here are
that we want an analytic expression for the characteristic
function for the PDF of tð0,sÞ and, simultaneously, we want
to keep a tight handle on its 2-point correlation statistics.
One could map, one-to-one, the Gaussian deviates to (near-
Gaussian) Gamma-distributed ones with the same 1-point
meanm¼/sSs and variance v¼ ðCsmÞ2H , but supported by
ð0,1Þ. In lieu of (24), their Laplace-based characteristic
function is

/e�txS¼
1

GðaÞ
a
m

� �a Z 1
0

ta�1e�at=mexpð�txÞdt

¼
1

ð1þmx=aÞa
, ð32Þ

where a¼ m2=v, which in the present circumstances is
assumed b1. However, we must also assume that the
ðH,Cs;/sSsÞ�dependent map betweenR and ð0,1Þ, which
involves inverse regularized incomplete Gamma functions
and error functions, does not change the 2-point correla-
tions. This needs to be verified numerically, an exercise that
is outside of our present scope. In the meantime, we revisit
in Fig. 4 the cases in Fig. 3 using

/TðsÞS¼/e�tSðsÞ ¼ 1þ
/sSs

aðsÞ

� ��aðsÞ
ð33Þ
Fig. 4. Same as Fig. 3 but after transforming the Gaussian fBm associated

with the scaling noise into a Gamma-distributed one with the same mean

and variance, assuming no change in the two-point correlations. /TðsÞS is

obtained from (33) and (34) when H = 1/4,1/2,3/4, and Cs ¼ 0 and 1.

This log-Gamma model for T(s) does not have the artifacts of the log-

normal one in Fig. 3, but its correlation properties are not fully known at

present.
from (32) with x¼ 1 to retrieve (21). The key variability
parameter is now s-dependent:

aðsÞ ¼ ð/sSsÞ1�H

CH
s

 !2

: ð34Þ

The magnitude of Cs is no longer limited in this log-Gamma
model and, to obtain sub-exponential behavior of the same
magnitude as in Fig. 3, it was increased from 1/

ffiffiffi
2
p

to unity
in Fig. 4. In particular, this setting gives us /Tð1=/sSÞS¼
1=2, irrespective of H.

Asymptotically ðsb1=/sSÞ, the transmission law in
(33) and (34) reads as a stretched exponential, further
enhanced with a logarithmic prefactor, when H\1=2:

ln/TðsÞS¼�
ð/sSsÞ2ð1�HÞ

C2H
s

� ln½1þC2H
s � ð/sSsÞ2H�1

	:

The limit H-1� (quasi-continuous extinction fields) leads
to an algebraic decay as the�1=C2

s power of source distance
s.12 Like for the Gaussian model, we find a modified
exponential behavior for any value of /sSs when H = 1/2.
This time, however, the mean extinction is multiplied by
lnð1þC2

sÞ=C2
s (which is less than unity for any value of Cs).

When Ho1=2, the expected super-exponential behavior is
obtained without the artifact at small s. Indeed the same
trend as in (31) is found.

6. Conclusions and potential applications

We surveyed the literature on transport in optical or
nuclear-engineering materials with randomly variable
macroscopic cross-section from the standpoint of propaga-
tion, i.e., the spatial part of the full transport kernel. Using a
specific-yet-representative class of Gaussian scaling varia-
bility models, we extended the general results obtained by
Davis and Marshak [15] in 2004 about systematically sub-
exponential transmission laws in heterogeneous optical
media with (implicitly, positive) correlations. In that paper,
fluctuations were represented by regular functions
whereas here they are represented by merely measurable

functions. In other words, we have gone from media where
extinction has a well-defined numerical value at almost
every point (a countable number of discontinuities can
occur) to media where only Lebesgue integrals of the
extinction field have well-defined numerical values (there
can then be discontinuities everywhere). Simply put, we
have gone from stochastically continuous media to very
‘‘noisy’’ media where high spatial frequencies dominate the
variability.

Further extension from positively to negatively corre-
lated fluctuating media was also achieved, i.e., we went
from decaying (pink) to increasing (blue) power-law
wavenumber spectra. We then verified the prediction by
Shaw et al. in 2002 [26] that this leads to super-exponential
behavior for the mean transmission law, at least in
12 Interestingly, this is precisely the kind of model for sub-exponen-

tial direct transmission assumed in Davis’ anomalous transport theory

[16]. That model, in turn, was rationalized by Barker et al.’s [61] analysis of

high-resolution satellite observations of variable oceanic cloud scenes,

finding (to reasonable accuracy) Gamma-distributed cloud optical depths.
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comparison with the case of media with flat/white spectra.
By the same token, we have established that, contrary to
speculation by Kostinski [25], an approach to particle or
radiation transport grounded in the continuum framework
of the linear Boltzmann equation can indeed accommodate
negative correlations (anti-clustering of material parti-
cles). However, one must concede that the discrete-point
process approach that Kostinski [23] originally introduced
into transport theory for positively correlated media
(material particle clustering) generalizes more naturally
to negative correlations.

We can now state with complete confidence that there
is equivalence between the classic continuum-based linear
Boltzmann model for radiation transport in heterogeneous
media on the one hand, and the interesting new description
of transport fundamentals developed by Kostinski and
coworkers at Michigan Technological University based
on discrete-point process theory on the other hand. The
scales most naturally described by point processes are
commensurate with the distances between material par-
ticles because no one argues that the notion of a position-
dependent density then breaks down in view of the
Poissonian or non-Poissonian fluctuations of counts in
the sample volume. Our noise models cover this regime
by never calling for a density, only a finite measure over a
finite interval. However, any statement about propagation
must cover optical distances of O(1), and preferably much
more, to be of any physical consequence. This means that,
to have simultaneously fluctuating particle counts in the
sample volume and O(1) optical distance across it, micro-
scopic cross sections must be � (inter-particle distance)2.
However, the ‘‘dilute medium’’ requirement for RT to be
valid is then violated and one must deal with multiple
scattering in a wave-theoretic framework; cf. Mishchenko
et al.’s review [62] in this Special Issue. It seems that for
optically dilute media (each scatterer is in the far-field of
each other) discrete-point and continuum-based descrip-
tions should be indistinguishable in their predictions over
the full range of optical distances, quasi-transparency to
complete opacity. If not RT, particle transport in some
ultra-dense astrophysical media (collapsing stellar cores,
white dwarfs, neutron stars, etc.) and their terrestrial
counterparts (inertial fusion experiments) may satisfy
these simultaneous constraints. Their exotic multi-physics
may well lead to interesting spatial variability at small
scales.

At any rate, this makes us all the more eager to see how
Mishchenko’s recent derivation of the multiple-scattering
vector (polarization-capable) radiative transfer equation
from the rigorous principles of statistical electromagnetic
wave theory13 [63, and references therein] can be extended
to heterogeneous optical media with extinction fluctua-
tions at all scales and amplitudes of interest. Indeed,
13 This new microphysical derivation is entirely classical and, as such,

dismisses as highly misleading the notion that one can substitute

‘‘photon’’ for, say, ‘‘neutron’’ in the definition of phase-space density

underlying the linear transport equation, and thus ‘‘derive’’ the RT

equation from kinetic theory. From this strictly radiative transfer per-

spective, discrete-point process theory is even more at fault since it is all

about transported particles interacting with material ones.
Mishchenko’s estimate of the impact on Beer’s law of
essentially sub-mean-free-path clumping is small. This is
consistent with our prior prediction [15] and present
results for 3D media dominated by high spatial frequency
variability, i.e., white and blue noises. It is also consistent
with the ‘‘atomistic mix’’ limit (vanishing correlation scale)
in stochastic RT theory for Markovian binary media [9].
However, the interesting effects (severe perturbation of
Beer’s law) occur when the opacity fluctuation scales
extend up to and beyond the mean-free-path, which is
itself boosted by heterogeneity with respect to the estimate
based on the mean extinction [15].

What may be the practical applications of radiation and/
or particle transport theory for media with high spatial
frequency variability, including negatively correlated
fluctuations?

The model used in the present study has three para-
meters, f/sS,Cs;Hg where H¼ ðbþ1Þ=2 in the regime of
interest ðjbjo1Þ. They need to be determined by direct in
situ measurement, or inferred from observable (typically,
boundary) fluxes. Details will of course depend on the area
of application. However, we suspect that in all cases the
2-point correlation parameter HðbÞ is the most challenging.
In climate-driven observational research, it was found that
terrestrial boundary-layer clouds such as marine strato-
cumulus, which matter tremendously in the radiative
balance of the Earth’s climate, are structured much like
admixtures in turbulence (� k�b wavenumber spectra,
with b¼ 5=3) down to scales of a few meters [33,34,
among others]; however, at smaller scales high frequencies
have enhanced amplitudes (wavenumber spectrum
becomes somewhat shallower than k�1, hence bt1)
[35,36]. Although typical mean-free-paths in such clouds
are 10s of meters, this small scale structure observed in the
liquid water content filed (including intermittent ‘‘spikes’’
indicative of droplet clustering) can leave an imprint on the
RT at scales unresolved both by observations and in most
current cloud modeling based on computational fluid
dynamics. Therefore a mean-field model for propagation
such as presented here can be put to good use. We can
anticipate the natural occurrence of similar structures in
many other turbulent environments where transport pro-
cesses unfold.

Current remote sensing methods typically assume that
Cs � 0 in their physics/RT-based retrieval algorithms. At
least this is the case for clouds and aerosols; moreover, the
medium is assumed to be a uniform plane-parallel slab
(thickness L) and the key parameter of interest is (mean,
vertical) optical depth /sSL. In principle, given sufficient
observational data (e.g., with multiple viewing directions),
one can use the present model to add new unknowns such
as Cs (assuming we can make an educated guess for b).
A stochastic RT model applies naturally to unresolved (sub-
pixel) variability. If the pixel is large enough to neglect 3D
RT adjacency effects, and the variability is slow enough
ðb41Þ then it has been argued [64] that unresolved
variations in cloud optical depth are amenable, like in
climate model gridcells [19], to the independent-column
approximation. In that scenario, b is irrelevant and only a
1-point variance parameter is required. Since assuming
zero variance leads to a biased retrieval of the mean optical
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depth, setting it to some climatological value should
remove at least some of the bias. Next-generation cloud/
aerosol retrieval algorithms should account for both unre-
solved and resolved scene variability in order to improve
the accuracy currently achieved.

For this and many other reasons, it is encouraging to see
vigorous research efforts into the large-scale effects of small-
scale variability, including transport kernels with non-expo-
nential decays. In this Special Issue alone, three articles
advance this topic. Bal and Jing [65] present a detailed
mathematical analysis of the variances (and covariances) of
directly transmitted and singly scattered light at one (or more)
boundary points from boundary sources for media with high-
frequency variability of amplitude small enough to linearize
the exponential transmission law; interestingly, the two broad
classes of media they consider, with ‘‘short-’’ and ‘‘long-range’’
correlations, correspond to our cases withbr0 and 0obo1,
respectively. Fichtl and Prinja [66] allow for isotropic scattering
as well as absorption in their investigation of azimuthally
averaged transport through 1D statistically homogeneous and
continuous (hence correlated) random media using the Kar-
huen–Lo�eve expansion; they too address both means and
variances of fluxes everywhere throughout the medium.14 As
previously noted, Larsen and Vasques [30] present a general-
ized formulation of the integro-differential linear transport
equation that allows for non-exponential transmission laws
and derive its diffusion limit.

As for the occurrence of negatively correlated ðbo0Þ
optical media in nature, we mentioned ultra-dense media in
Section 5.2, and we redirect the reader for less exotic
possibilities, described [26] and critically discussed [15]
elsewhere in this Journal. The associated transport kernels
with super-exponential behavior may find more relevance to
engineering systems, for nuclear applications in particular. As
demonstrated by two papers in this Special Issue [67,68], the
enhanced safety of pebble-bed reactor designs has motivated
a renewed of interest in detailed studies of particle transport
in Markovian binary mixtures, which have an essentially flat
wavenumber spectrum out to the scale of one or more mean-
free-paths. At scales on the order of the pebble radius
ð � 3 cmÞ, the centers of closely packed spheres repel each
other for obvious mechanical reasons. This close-range
negative correlation trend may need to be incorporated
into mean-field neutron transport theories to ensure the
required level of fidelity, possibly using methods similar to
those presented herein. We also find that the small-scale
heterogeneity of soft human tissue is a growing concern
[69,70] in non-invasive biomedical diagnostics using diffuse
optical tomography—a new and interesting outlet for theo-
retical and computational RT.
14 These authors adopt, like here (and with the same adverse

consequences), Gaussian variability (variance vs) and then move on to

more physically realistic log-normal fluctuations. Their preferred choice

of correlation structure, however, follows from GsðrÞ ¼ vsexpð�r=lcÞ

where lc is the standard (i.e., ‘‘integral’’) correlation scale. This choice

for GsðrÞ leads to EsðkÞ ¼ vslc=½1þðlckÞ2	. Therefore, by our classification,

it exhibits b¼ 0 (de-correlated, stationary) behavior at large scales and

b¼ 2 (Bm-like, non-stationary) behavior at small scales, with the latter

limit ensuring the required stochastic continuity.
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