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a b s t r a c t

A novel hybrid Monte Carlo transport scheme is demonstrated in a scene with solar illumi-
nation, scattering and absorbing 2D atmosphere, a textured reflecting mountain, and a
small detector located in the sky (mounted on a satellite or a airplane). It uses a determin-
istic approximation of an adjoint transport solution to reduce variance, computed quickly
by ignoring atmospheric interactions. This allows significant variance and computational
cost reductions when the atmospheric scattering and absorption coefficient are small.
When combined with an atmospheric photon-redirection scheme, significant variance
reduction (equivalently acceleration) is achieved in the presence of atmospheric
interactions.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation and background

Forward and inverse linear transport models find applications in many areas of science including neutron transport [1–3],
medical imaging and optical tomography [4,5], radiative transfer in planetary atmospheres [6–8] and in oceans [9,10], as
well as the propagation of seismic waves in the solid Earth [11]. In this paper, we focus on the solution of the forward trans-
port problem by the Monte Carlo (MC) method with, as our main application, remote sensing (an inverse transport problem)
of the atmosphere/surface system [12]. In our demonstration, light is emitted from the Sun and propagates in a complex
environment involving absorption and scattering in the atmosphere and reflection at the Earth’s surface before (a tiny frac-
tion of) it reaches a narrowband detector, typically mounted on a airplane or a satellite.

The integro-differential transport Eq. (1) may be solved numerically in a variety of ways. Monte Carlo (MC) simulations
model the propagation of individual photons along their path and are well adapted to the complicated geometries encoun-
tered in remote sensing. Photons scatter and are absorbed with prescribed probability depending on the underlying medium.
The output from the simulation, e.g., the fraction of photons that hit a detector, is the expected value of a well-chosen
random variable. These simulations are very easy to code, embarrassingly parallel to run, and suffer (in principle) no
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discretization error. The drawback is that they can be very slow to converge. MC methods converge at a rate (variance/N)1/2

where N is the number of simulations, and the variance is that of each photon fired. In remote sensing, the (relative) variance
is high in large part because the detector is typically small and thus most photons are not recorded by the detector. In order
to be effective, even in a forward simulation, MC methods must be accelerated.

One approach to speedup MC simulations is to use quasi-Monte Carlo methods, which steepen the convergence rate from
�N�1/2 to a more negative exponent. However, most MC speedup efforts focus on reducing the variance of each photon. See
[2,3] or the review of more recent work on neutron transport in [14,15,13] and on 3D atmospheric radiative transfer in
[16,17]. See also [18] for a thorough introduction to the MC techniques, including variance reduction, used in computer
graphics. In problems with a small detector, this is achieved by directing photons toward that detector, and re-weighting
to keep calculations unbiased. When survival-biasing is used, photons have their weight decreased rather than being ab-
sorbed [2,3].3 Often, one uses some heuristic (such as proximity to the detector), or some function to measure the ‘‘importance’’
of each region of phase space. In splitting methods [2,3], the photon is split into two or more photons upon identifying that a
photon is in a region of high importance. The weight of each photon is then decreased proportionately. Propagating many
photons with a low weight is not desirable, therefore splitting is often accompanied by Russian roulette. Here, if a photon enters
a region of low enough importance, then the photon is terminated with a certain probability, i.e., high chance of absorption if
the weight is low; in the rarer alternative outcome of the Bernoulli trial, the weight is increased to keep the simulation numer-
ically unbiased. So there is typically a slight cost in variance to improve efficiency (by terminating low-weighted trajectories).
Typically a weight window is used to enforce regions of low/high importance. Source biasing techniques change the source
distribution in order to more effectively reach the detector. More generally, the absorption and scattering properties at any
point can be modified, provided photons are re-weighted correctly.

It has long been recognized that the adjoint transport solution is a natural importance function [19,2,3,20–22,14,23,15].
One can use approximations of the adjoint solution—typically a coarse deterministic solution—to reduce variance. The result
is a hybrid method (deterministic and MC). The AVATAR method uses an adjoint approximation to determine weight win-
dows [22]. The CADIS scheme in [14] uses an adjoint approximation in both source biasing and weight-window determina-
tion. An adaptive technique that successively refines the solution in ‘‘important’’ regions, using the adjoint to designate such
regions, is described in [24,25]. In [19,2,3,20], a zero-variance technique is outlined that uses the true adjoint solution to
launch photons that all reach the detector with the same weight . . .which happens to be the correct answer. This method
is of course impractical since determining the exact adjoint solution everywhere is harder than determining some specific
integral of that solution, which is usually the goal of a MC simulation. The LIFT method [20,21] therefore uses an approxi-
mation of the adjoint solution to approximate this zero-variance method.

We adapt the zero-variance technique to the particular problem we have at hand; see Fig. 1 for the type of geometry con-
sidered in this paper. The problem we consider has a fixed, partially-reflective, complex-shaped lower boundary, and rela-
tively large mean-free-path (MFP) in the sense that a large fraction of the photons reaching the detector have not scattered
inside the (optically thin) atmosphere. Calculation of the approximate adjoint solution used to emulate zero-variance tech-
niques is difficult and potentially very costly. What we demonstrate in this paper is that partial, ‘‘localized’’ (in an appropri-
ate sense) knowledge of the adjoint solution still offers very significant variance reductions. More specifically, we calculate
adjoint solutions that accurately account for the presence of the boundary but do not account for atmospheric scattering
(infinite MFP limit). The computation of the adjoint solution thus becomes a radiosity problem with much reduced dimen-
sionality compared to the full transport problem. This, of course, can only reduce variance in proportion to the number of

Fig. 1. Mountain (1 � cos3x shape), cloud, sky, and detector. Dot size indicates relative adjoint flux strength. Large dots on right-hand-side are the detector
(dot size is down-scaled for detector). Dot size on mountain indicates that portions of the mountain are shaded from the detector, and that the surface
albedo is varying. See Section 3.1 for specifics, as used in the present study.

3 Note the somewhat confusing terminology: on the one hand, a method is statistically biased if the expected outcome is not the intended one. On the other,
the practice of re-directing photons in favorable directions and/or reducing the number of scattering events is also called biasing. In the latter case the photon
has its weight adjusted so that the simulation is unbiased.
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‘‘ballistic’’ photons that never interact with the atmosphere. When combined with simple rules for allowing atmospheric
scattering and sending some photons directly from the atmosphere to the detector, our hybrid method yields very significant
variance reduction at relatively minimal cost. Furthermore, the methodology studied is applicable whenever any method is
available to deterministically pre-calculate flux over any subset of paths. For instance, complex propagation of light in clouds
and its importance could be pre-calculated locally and incorporated into the MC simulations in a similar fashion. This ‘‘mod-
ular’’ approach to the description of the adjoint solution is well-adapted to the geometries of interest in remote sensing and
avoids complicated, global (hence expensive) deterministic calculations of adjoint transport solutions. Our treatment of the
reflecting boundary described in detail in this paper is a first step toward modular adjoint transport calculations and their
variance reduction capabilities in remote sensing.

The rest of the paper is organized as follows. In Sections 1.2 and 1.3 respectively, the physical problem and statistical for-
mulation are described. In Section 1.4, the analog and survival-biased MC algorithms are presented. In Section 2, the surface
adjoint importance (SAI) and regularized SAI methods are introduced. These are the hybrid adjoint-based methods at the
core of this work. In Section 3, numerical estimations of variance reductions and computational speedups are given. For
an expanded exposition of techniques and analyses from a mathematical standpoint, we refer the interested reader to
[26]. Finally, we summarize our findings in Section 4 and conclude with thoughts about potential applications in remote
sensing science.

1.2. Problem setup

Our setup is photon transport in a domain R � Rd (d = 2,3, with d = 2 in our present demonstration) described in Fig. 1.
The outward normal to the domain boundary @R at position r is denoted mr. R is the atmosphere, the sky/mountain/sides/
detector constitute @R. We have one small detector located on the right-side of @R, and the goal of simulations is to estimate
the photon flux through the detector. Since photons are monokinetic, propagation direction v is a unit vector in the sphere
S

d�1 embedded in d-dimensional space (unit circle for d = 2).
We model radiance (a.k.a. specific intensity or angular photon flux density) I(r,v) in our medium with a boundary source

distribution Q. I obeys the following integro-differential transport equation and boundary condition:

v � rIðr;vÞ þ rðrÞIðr; vÞ ¼ KIðr;vÞ;

Iðr;vÞ ¼ KIðr;vÞ
jmr � v j

þ Qðr; vÞ
jmr � v j

; r 2 @R; and v � mr < 0;
ð1Þ

the integral operators being defined by kernels

Kf ðr; vÞ ¼ rsðrÞ
R d�1

S
pðr;v 0 ! vÞf ðr;v 0Þdv 0; r 2 R;

Kf ðr; vÞ ¼ aðrÞ
R
mr �v 0>0 Pðr;v 0 ! vÞjmr � v 0jf ðr;v 0Þdv 0; r 2 @R; and v � mr < 0:

ð2Þ

The extinction coefficient, a.k.a. total cross section (per unit of volume) r(r) is the sum of the intrinsic absorption coefficient/
cross-section ra(r) and the scattering coefficient/cross-section rs(r). For the partially reflecting boundary condition (viewed
here as a surface scattering), a(r) is the local value of the albedo. Both volume (p(r,v0 ? v)) and surface (P(r,v0 ? v)) phase
functions are normalized ð

R
pdv 0 ¼ 1Þ.

Since the transport problem is linear, we use a normalized boundary source, i.e.,Z
@R

Z
mr �v<0

Qðr; vÞdlðrÞdv ¼ 1; ð3Þ

where dl(r) is the appropriate measure on the (d � 1)-dimensional boundary.
Our detector measures photon flux and is described by a ‘‘response function,’’ g(r,v)jmr � vj, where g(r,v) is zero everywhere

except when r is in the physical detector (its aperture or ‘‘pupil’’) and v points out of the boundary. Where g – 0 it is constant
and, furthermore, it is normalized so that

R
gðr;vÞdr dv ¼ 1. The goal of our Monte Carlo method is to compute the detector’s

signal Z
@R

Z
mr �v>0

gðr;vÞjmr � v jIðr; vÞdlðrÞdv : ð4Þ

In the present study, any v can contribute to the radiometric signal measured at r. To model an imaging detector, direction
space would be limited to a finite field-of-view that would in turn be subdivided into individual ‘‘pixels.’’

For future use, we define the function

Erðr; r0Þ :¼ exp �
Z jr�r0 j

0
rðr þ t dr0 � rÞdt

( )
;

where dr0 � r :¼ ðr0 � rÞ=jr0 � rj. Physically, it describes the probability of direct transmission of light from point r to point r0 (or
vice-versa), that is, without suffering any collision.
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1.3. Statistical formulation/notation

The measurement defined formally in (4) is approximated in a Monte Carlo simulation by estimating an average

SN :¼ 1
N

XN

n¼1

1DðxnÞ;

where the xn are photon paths (x = (r0,r1, . . . ,rk)) generated by the ‘‘analog’’ chain (meaning analogously to real-life photon
travel, cf. Algorithm 1, and the relevant indicator function is 1D(x) = 1 if the path hits the detector (hence the subscript D),
and =0 otherwise. The paths are random variables and, with Ef�g denoting statistical expectation, we have

EfSNg ¼ Ef1Dg ¼ P½D�;

where the notation P[D] emphasizes that this is a probability of hitting the detector. We also have P[D] equal to the desired
measurement or signal in (4). For finite N,SN is not equal to P[D] exactly. The mismatch is quantified in a statistical sense
through the variance

VarfSNg :¼ EfðSN � P½D�Þ2g ¼ Efð1D � P½D�Þ2g
N

¼ Varf1Dg
N

;

since all of the events xn contributing to the SN estimator are independently drawn.
Rather than SN, one may generate paths according to some modification of real-life photon travel and then estimate

P½D� � TN :¼ 1
N

XN

n¼1

1DðxnÞ
dPa

dP
ðxnÞ;

where the ratio dPa
=dPðxÞ is the ratio of the probability density of x in the analog chain to that in the modified chain. This

importance sampling technique is widely used in statistics since often times TN will have lower variance than SN. Indeed, most
of the variance reduction techniques mentioned in the introduction are of this type. In our algorithms we compute this ratio
step-by-step and refer to it as a weight (modifier). So, rather than counting photons, we count weighted photons.

For future use we define the following (standard) statistical notations and convention. First, we write u � U½0;1� to indi-
cate that u is a random variable uniformly distributed on the interval [0,1]. Second, a probability density such as p(x) can be
denoted explicitly (e.g., p(x) = (2p)�1/2exp{�x2/2} in the case of the normal distribution with zero mean and unit variance), or
it can be given up to a constant (since it must integrate to one). In this last case, we would write p(x) / exp{�x2/2}.

1.4. Standard algorithms

We present here two basic algorithms for Monte Carlo transport. These are well known but we do this in order to dem-
onstrate our notation. Algorithm 1 is often referred to as analog since the photons follow a path analogous to photons in the
real world.

Algorithm 1. Analog Monte Carlo transport

1: Choose a starting position/direction (r0,v0) according to the sun’s source density Q(r,v)
2: Draw u � U½0;1� and cast the photon along the ray r0 + tv0 until Er(r0 + tv0) < u. Call this point r1. If this does not

happen before @R is reached then set r1 to the boundary point at the intersection with the ray.
3: if r1 2 R then
4: With probability rs(r1)/r(r1), the photon is not absorbed, and we select v1 using the probability density

v1 # pðr1; v0 ! v1Þ;

otherwise the chain is stopped.
5: els if r1 2 @R then
6: With probability a(r1) the photon is not absorbed, and we select v1 using the probability density

v1 # Pðr1; v0 ! v1Þ;

otherwise the photon is absorbed and we stop the chain.
7: end if
8: Continue alternating casts and direction changes until either the photon is absorbed, escapes through the upper

boundary (‘‘sky + sides’’), or the detector is reached.
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For use in Algorithm 5 further on, we will need to know the probability density of the analog chain producing a path x.
This is given by

Danalogðr0; r1Þ ¼ Qðr0;v0ÞErðr0; r1Þ;
Danalogðr0; r1; r2Þ ¼ Danalogðr0; r1ÞKanalogðr1;v0 ! dr2 � r1ÞErðr1; r2Þ

and so on. Above Kanalog is given by

Kanalogðr1; v0 ! v1Þ :¼
rsðr1Þpðr1;v0 ! v1Þ; r1 2 R;

aðr1ÞPðr1;v0 ! v1Þ; r1 2 @R:

�

Algorithm 2 uses a trick known as survival-biasing since photons will survive (almost) any interaction with the media. We do
this by casting photons while ignoring intrinsic absorption. So, e.g., if a patch of media has ra large and 0 < rs/r� 1 the pho-
ton will almost never scatter there. Our weight is then Er=Ers . When the photon interacts with the surface, then so long as
a > 0, we do not absorb but multiply the photon weight by a. Another, slightly different but also common, survival-biasing
method would cast photons in the same manner as analog, but would eliminate absorption and re-weight by rs/r. So, e.g., if
a patch of media has ra large and 0 < rs/r� 1 the photon would likely interact with the media and scatter but not be ab-
sorbed there; its weight however would be reduced by a factor of rs/r (known in the radiative transfer literature as the ‘‘al-
bedo for single scattering’’).

Algorithm 2. Survival-biased Monte Carlo transport

1: Choose a starting position/direction (r0,v0) according to the source density Q(r,v)
2: Draw u � U½0;1� and cast the photon along the ray r0 + tv0 until Ers ðr0 þ tv0Þ < u. Call this point r1. If this does not

happen before @R is reached then r1 is the boundary point we have reached. Since we paid no attention to intrinsic
absorption during the cast, the photon picks up a weight equal to

Eraðr0; r1Þ ¼
Erðr0; r1Þ
Ersðr0 ;r1Þ

3: if r1 2 R then
4: Select v1 using the probability density

v1 # pðr1; v0 ! v1Þ

5: els if r1 2 @R and a(r1) > 0 then
6: Select v1 using the probability density

v1 # Pðr1; v0 ! v1Þ

Since we had no chance of boundary absorption, the photon’s weight is multiplied by a(r1).
7: els if r1 2 @R and a(r1) = 0 then
8: The photon is absorbed and we stop the chain.
9: end if
10: Continue alternating casts and direction changes until either the photon is absorbed, escapes, or reaches the

detector.

2. The surface adjoint importance (SAI) method

The SAI method uses an approximation to the surface reflection problem to reduce variance coming from surface inter-
actions. It ignores atmospheric effects and therefore, by itself, is statistically biased. In Section 2.2 we pair it with other meth-
ods to produce an unbiased estimate of the detected flux.

2.1. Pure SAI

Here we ignore atmospheric effects and demonstrate and develop a Monte Carlo method that sends photons from surface
point to surface point and then to the detector. If atmospheric effects are not present, and our deterministic solution was
perfectly accurate, this method would have zero variance.

G. Bal et al. / Journal of Computational Physics 230 (2011) 7723–7735 7727
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The adjoint solution to transport may be developed by considering the L2 adjoint of the integral solution to transport and
reversing the role of the source and detector. Let Is be the adjoint solution when only surface effects are present. We therefore
have

Isðr;vÞ ¼ aðrÞ
Z

mr �v 0<0
Pðr;v ! v 0ÞIsðrþðr; v 0Þ;v 0Þdv 0 þ gðr;vÞ: ð5Þ

This adjoint solution corresponds (in a Monte Carlo viewpoint) to sending photons that start at the detector and travel back-
wards. Therefore, it will have its maximum at the detector. It will be higher in places that have a clear path to the detector. Is

will be zero at places from which a photon cannot reach the detector. Our numerical solution of (5) is described in the
Appendix.

The pure SAI chain is defined by the steps described in the following Algorithm 3.

Algorithm 3. Pure SAI

1: Choose a starting position/direction (r0,v0) according to the modified source density

Qsaiðr;vÞ / Qðr;vÞIsðrþðr;vÞ;vÞ

The photon picks up a weight Q(r0,v0)/Qsai(r0,v0)
2: Cast the photon until it hits the opposing boundary at point/direction (r1,v1) = (r+(r0,v1),v1). The weight is multiplied

by

Erðr0; r1Þ
1

3: Change direction according to the density

Ksaiðr1;v1 ! v2Þ ¼ Csaiðr1ÞPðr1; v1 ! v2Þ
Isðrþðr1;v2Þ;v2Þ

Isðr1; v1Þ

where Csai(r) is a normalization factor depending only on r 2 @R. Since we did not account for boundary absorption, the
photon weight is multiplied by a(r1). The modified direction change must also be taken into account and therefore, in
addition, the weight is multiplied by

Kanalogðr1;v1 ! v2Þ
Ksaiðr1; v1 ! v2Þ

4: Cast the photon until it hits the opposing boundary. If it hits the detector, stop and record a hit. Else, repeat step 3.

For use in Algorithm 5, we will need to compute the probability density of a path x = (r0, . . . ,rs) being generated by pure
SAI. This is simply the denominator in the corresponding weights. Denoting this by Dsai we have

DsaiðxÞ ¼ 0; if rj 2 R for any j

and for paths such that rj 2 @R for all j, we define Dsai recursively (with v j :¼ drjþ1 � rj )

Dsaiðr0; r1Þ ¼ Ssaiðr0;v0Þ;

Dsaiðr0; r1; r2Þ ¼ Dsaiðr0; r1ÞKsaiðr1;v0 ! v1Þ;

Dsaiðr0; . . . ; rkÞ ¼ Dsaiðr0; . . . ; rk�1ÞKsaiðrk�1;vk�2 ! vk�1Þ:

Remark 2.1

	 A discretized version of the density Qsai is pre-computed using the (discrete) solution Is; see Section 3. This means that we
can pre-compute the normalization factor Csai. The discrete density Qsai will be defined at a number of points (ri,v0) where
v0 is the anti-solar direction. We use the density to decide on a center point ri, and then perturb the starting point by a
small (random) amount to eliminate discretization effects in the final solution.
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	 The direction change pdf is also pre-computed and stored as a discrete pdf over angles. We use the pdf to pick a direction
center vj and then perturb to obtain the new direction.
	 Up to numerical error one can see that Csai(r) = a(r). Indeed, dividing (5) through by Is(r,v) we have

1 ¼ aðrÞ
Z

mr �v 0<0
Pðr; v ! v 0Þ I

sðrþðr;v 0Þ;v 0Þ
Isðr;vÞ

dv 0 þ gðr;vÞ
Isðr;vÞ

:

So away from the detector g(r,v) = 0 and the integral is therefore equal to 1.
	 That this method is biased is easy to see: If a region of the atmosphere has non-zero scattering, then it would be possible

(in the analog world) to scatter from that point to the detector. This type of interaction is not allowed in a pure SAI world.

This is an implementation of the zero variance adjoint-based chains studied in [2,3,20] in the special case where atmo-
spheric effects are not present. Hence (disregarding numerical error), this would be a zero-variance method were atmo-
spheric absorption/scattering absent.

We verify this claim numerically by testing the method in simulations without atmospheric effects. See Fig. 2 where this
is tested with both a flat terrain and a curved ‘‘cos3’’ mountain. The curved mountain increases variance since discretization
does not allow the function r+(x,v) to be implemented perfectly.

2.2. Regularized SAI

Here we use the SAI chain as part of a larger unbiased chain. Since Algorithm 3 does not generate paths following all pos-
sible interactions, we must supplement it with an algorithm that does. We then use a number qs 2 [0,1] to determine the
fraction of photons that travel according to Algorithm 3 (this fraction = 1 � qs), and what fraction according to the supple-
mental algorithm.

Before describing the regularized SAI algorithm, we present the supplemental Algorithm 4 dubbed ‘‘heuristic scattering
adjustment.’’ It is a survival-biased algorithm in the sense that no absorption occurs within the atmosphere, or at boundary
points (unless the boundary point had a = 0, e.g. the sides/sky). It also makes use of a simple scheme to direct a fraction of
atmospheric interactions toward the detector. No claim is made to the optimality of this re-direction (it is similar to the tech-
nique of local estimation [27,16]). We use Algorithm 4 since it is simple to understand and illustrates the dramatic decrease in
variance that can be achieved when two methods (SAI and heuristic) are used together in Algorithm 5 (see also Section 3).

Algorithm 4. Heuristic scattering adjustment with parameter qv 2 [0,1]

1: Choose a starting position/direction according to the standard source density Q(r,v)
2: Cast the photon as in Algorithm 2 until it hits the opposing boundary or interacts with the atmosphere at r1. The

photon picks up a weight equal to Erðr0; r1Þ=Ers ðr0; r1Þ
3: if r1 2 R then
4: With rd0

¼‘‘the midpoint of the detector’’, compute

qheuðr1; v0Þ :¼ 1� ð1� qvÞ
pðr1;v0 ! drd0 � r1Þ
kpðr1;v1 ! �ÞkL1

With probability 1 � qheu draw v1 from a uniform distribution of directions pointed toward the detector (we call this
fV(r1,v1)), and with probability qheu draw v1 from p(r1,v0 ? �). The weight is multiplied by

rsðr1Þpðr1; v0 ! v1Þ
ð1� qheuÞfV ðr1;v1Þ þ qheupðr1; v0 ! v1Þ

; if r1 2 R:

5: else if r1 2 @R and a(r1) > 0 then
6: pick a new direction according to the density P(r1,v0 ? v1). The weight is multiplied by a(r1).
7: else if If r1 2 @R and a(r1) = 0 then
8: the photon is absorbed and we stop.
9: end if
10: Continue in this manner until absorption or the detector is reached

So at every scattering event, the weight is modified by a ratio of either a(r)P or rs(r)p to Kheu where

Kheuðr;v ! v 0Þ :¼
ð1� qheuÞfV ðr; vÞ þ qheupðr;v ! v 0Þ; r 2 R;

Pðr; v ! v 0Þ; r 2 @R:

�
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For use in Algorithm 5 we will need to compute the probability density of a given path generated by Algorithm 4. This is
simply the denominator in the corresponding weight. Denote this by Dheu(r0,r1, . . . ,rk), which we define recursively by (with
v j :¼ drjþ1 � rj )

Dheuðr0; r1Þ ¼ Qðr0;v0ÞErs ðr0; r1Þ;
Dheuðr0; r1; r2Þ ¼ Dheuðr0; r1ÞKheuðr1;v0 ! v1ÞErs ðr1; r2Þ;
Dheuðr0; . . . ; rkÞ ¼ Dheuðr0; . . . ; rk�1ÞKheuðrk�1;vk�2 ! vk�1ÞErs ðrk�1; rkÞ

ð6Þ

and so on.
We now present Algorithm 5, the regularized SAI algorithm that combines pure SAI (Algorithm 3) with the heuristic scat-

tering adjustment (Algorithm 4). Note that any unbiased algorithm may be combined with pure SAI in a similar manner.

Algorithm 5. Regularized SAI with parameters qs, qv 2 [0,1]

1: With probability 1 � qs, generate a path according to Algorithm 3. With probability qs generate it according to
Algorithm 4.

2: The weight of the path x = (r1, . . . ,rs) is

DanalogðxÞ
ð1� qsÞDsaiðxÞ þ qsDheuðxÞ

:

Algorithm 5 uses SAI to produce paths that interact only with the surface. One could easily devise other algorithms that
send paths via the heuristic chain, and once paths interact with the surface they use the SAI chain. This could reduce variance
further, but we choose not to study this in order to simplify the presentation.

3. Numerical results

3.1. Parameter choices in numerical simulations

In the assumed d = 2 transport space, we have r = (x,y), where x increases from left to right in Fig. 1 and y increases from
bottom to top; r = (0,0) is the point at the bottom of the valley. For directions, we have v = v(/) = (cos/, sin/) where / in-
creases counterclockwise from the x > 0 axis.

In the simulations performed with r = 0 (no atmospheric interactions), we used both a flat surface (so that our domain
was [�p,p] 
 [2,4]) and a ‘‘cos3’’ surface (Fig. 1). We swept h, with 0.002 < h < 0.2. We did not use any heuristic scattering
adjustment (qv = 1.0). In all cases, we assume an isotropic (Lambertian) redistribution by diffuse surface reflection. This leads
to the following surface scattering phase function and assumed surface albedo distribution:

Pðr;v ! v 0Þ /
jmr � v 0j; mr � v 0 < 0
0; otherwise

�
; aðrÞ ¼

1; jxj < 2:5
0; otherwise

�
:

Fig. 2. Left: when a flat mountain is used, variance �O(h1.5) where h is the discretization parameter. Right: on the curved boundary discretization effects are
more prevalent and convergence is slower.
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The cutoff jxj < 2.5 was done to simplify the coding (allowed us to use one simple routine for all values of h), and has no the-
oretical consequence. The source was mono-directional / = �p/2, and given by

Qðr; vð�p=2ÞÞ ¼
1=5; jxj < 2:5; y ¼ 4;
0; otherwise:

�
In the simulations involving atmospheric interactions (r > 0), we used a cos3 type surface. We compute speedup in a vari-

ety of cases. The mean-free-path MFP = r�1 was varied as well as qs, h, and qv. We swept 0.002 < h < 0.15. In all cases the
atmospheric scattering coefficients were constant with rs = 2ra (hence rs/r = 2/3). The atmospheric scattering was given by

pðr; v ! v 0Þ / 1þ ðv � v 0Þ2;

which mimics a molecular (Rayleigh) in d = 2. The other coefficients were chosen to have features (in this case oscillations)
on a scale coarser than the fine values of h, and finer than the coarse values.

The surface albedo was chosen to be quite complex (significantly different than the flat surface/constant reflection com-
monly used). The phase function P was as before (Lambertian), but a is given by

aðrÞ ¼
0; jxj > 2:5;
0:75þ 0:25 sinð2px=0:05Þ; 1 < x < 2:5;
0:35þ 0:25 sinð2px=0:05Þ; �2:5 < x < 1;

8><>:
using the same inconsequential cutoff jxj < 2.5. Off the mountain there was no scattering (perfectly absorbing boundary).

The source was mono-directional / = �p/2 and given by

Qðr; vð�p=2ÞÞ /
1þ 0:25 sinð2px=0:07Þ; jxj < 2:5; y ¼ 4;
0; otherwise:

�

3.2. Speedup (figure of merit)

We start by defining our figure of merit used to compare the different algorithms. We take the viewpoint that each algo-
rithm produces a sequence of paths fxngN

n¼1 and corresponding random variables n(xn) equal to the product of 1D(xn) times
the weight that the photon picked up along the way. To distinguish different methods we write na for analog, nsb for survival-
biasing, nsai for pure SAI, nheu for heuristic scattering, and nq for the regularized SAI method.

For all of these methods, define the approximation after N random draws

INðnÞ :¼ 1
N

XN

n¼1

nðxnÞ:

For n equal to any of the above methods, IN(n) is an unbiased estimator of Efng ¼ P½D�, i.e., the probability of a detector hit.
The RMS estimation error e is given by

eðnÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EfjINðnÞ � P½D�j2g

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varfng

N

r
:

For a given error level e, the required number of MC draws is then N(e,n) :¼ Var{n}/e. The required simulation time T(e,n) for
one estimation of P[D] is given by

Tðe; nÞ :¼ T0ðnÞ þ sðnÞN ¼ T0ðnÞ þ
sðnÞVarfng

e2 ;

where T0(n) is the time needed to compute the deterministic adjoint solution (e.g. at level h when n = nh), and s(n) is the ex-
pected time for one draw using the appropriate measure for the random variable n. We foresee the use of SAI in situations
where the boundary remains fixed, but the atmosphere changes (due to, e.g., moving clouds over a fixed surface). We there-
fore consider the time for m simulations using one boundary,

Tðe; n;mÞ :¼ T0ðnÞ þmsðnÞN ¼ T0ðnÞ þm
sðnÞVarfng

e2 :

Schemes may be compared with the ratio

Tðe; n1;mÞ
Tðe; n2;mÞ

¼ e2T0ðn1Þ þmsðn1ÞVarfn1g
e2T0ðn2Þ þmsðn2ÞVarfn2g

:
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For a deterministic approximation of Is, we expect T0(n) � C(n)h�2(d�1). We in fact measure (with d = 2) T0(nh) � 0.017h�2.
Our ‘‘benchmark’’ scheme is survival-biasing. Since nsb requires no deterministic solution, the relevant ratio (and our figure of
merit) is

Speedupðnq; e;mÞ :¼ msðnsbÞVarfnsbg
e
h

� �2C þmsðnqÞVarfnqg
:

We measured speedup when either m = 10 or, formally, m =1 (‘‘Ignoring deterministic solve’’).

Fig. 3. jP[D] � hIs,Sij/P[D] is generally lower for smaller h. However, speedup is still very good even for large h. Diam is the maximal diameter of the
simulation domain R.

Fig. 4. Speedup when using both surface adjoint approximation Is (with parameter qs) and heuristic atmospheric scattering (with parameter qv).
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3.3. Variance reduction

Here we analyze the variance of the SAI chain in the presence of atmospheric interactions. Note that even when the error
jP[D] � hIs,Sij is high, we still get good variance reduction. See Fig. 3. This emphasizes the point that the quality of the deter-
ministic solve is not so important in a modular scheme.

Our implementation swept both qs and qv. As expected, we see decreasing speedup with increasing atmospheric scatter-
ing strength r. See Fig. 4.

It is important to note that use of adjoint-enhanced surface scattering, and heuristic atmospheric scattering (qs < 1,qv < 1)
together is especially helpful. In fact, even with a small MFP = 1.3 Diam (Diam is the maximal diameter of the simulation
domain R), we realize good speedup when qs = 0.9, qv < 1. Note that if either qs = 1 or qv = 1 (so no use of either SAI or heuristic
scattering adjustment), speedup almost disappears. This is slightly counter-intuitive but may be explained as follows: Each
method (SAI or heuristic) significantly increases the number of paths in two significant classes (surface-only and atmo-
sphere-to-detector). Therefore, variance from these path-classes is all but eliminated. Supposing each of these path-classes
accounts for 2/5 of the total paths reaching the detector, by themselves they can only reduce variance by a factor of 1/(1 � 2/
5) = 5/3. However, together they can reduce variance by a factor of 1/(1 � 4/5) = 5.

As one can see, selection of the parameters qs and qv makes a significant difference in the resultant variance. We provide
some heuristics here and refer the reader to [26] for more details. When qs ? 0 most of the photons will travel on the surface
only. The photons that take a route prescribed by the heuristic chain must then carry an additional weight = 1/qs to compen-
sate for this. For this reason, picking qs too small results in increased variance. A similar argument holds for qv. That the opti-
mal qs is so close to 1 (and greater than the optimal qv) can also be explained by the fact that paths interacting exclusively
with the surface are less likely to occur (in the analog world) than those interacting with the surface and atmosphere.

4. Conclusion and outlook

A novel method for Monte Carlo transport was presented that uses an approximation of the adjoint (ignoring atmospheric
effects) to reduce variance in simulations, equivalently, accelerate convergence to a specified accuracy. This algorithm, the
surface adjoint importance (SAI) method, may be combined with any unbiased method to significantly reduce variance com-
ing from surface interactions when the overlaying atmosphere is optically thin. If it is combined with a method that reduces
variance coming from atmospheric interactions, significant overall variance reduction is achieved. The implementation is
relatively simple, requiring only an approximate adjoint transport solver for the boundary which adds virtually no overhead
to the Monte Carlo computation time.

A possible application of this kind of accelerated Monte Carlo modeling in remote sensing is to address ‘‘adjacency’’ effects
caused by highly variable terrain, including built environments (urban canyons). The standard adjacency effect is observed
when an aerosol layer of moderate optical thickness mixes in an imaging detector’s pixel light that has been reflected off
surface elements with contrasting albedos in neighboring pixels. This is now a solved problem in the case of a variable-
but-flat surface under a uniform atmosphere [28]. However, adjacency effects caused by non-flat terrain are only beginning
to be explored, particularly in the thermal IR (where Q(r,v) is determined by temperatures and emissivities).

On a broader scale, our work is an illustration of a modular approach to variance reduction whereby different interactions
are handled separately and then pieced together in an unbiased manner. Specifically, these different interactions could be
pieced together as in Algorithm 5.

For instance one can envision a ‘‘cloud’’ module where radiation transport inside the cloud (dominated by multiple scat-
tering) is treated off-line in some judicious approximation, and then incorporated into complex scene simulation. In appli-
cations driven by surface property retrievals from remote sensing data, efficient modularized Monte Carlo modeling would
open the door to advanced atmospheric compensation schemes with broken-cloud capability. This is another wide open
frontier recently explored in [29].
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Appendix A. Numerical solution to the adjoint problem

Here, we seek to approximate Is with Ih, at discretization level h.
Being in d = 2 space, this problem in irradiation and radiative exchange between surface elements is not amenable to

commonly available radiosity codes, which are naturally designed for productivity in the usual d = 3 space. Radiosity is
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indeed used extensively for heat transport computations in engineering applications [30, among others], as well as in
photorealistic computer graphics [31, among others]. At the same time, it is quite easy to encode a 2D radiosity code, as
shown below, and there is no need for optimization for our present purposes (demonstrate the SAI speedup). However, be-
yond this demonstration, there will undoubtedly be applications in 3D radiative transfer per se, and then existing high-per-
formance radiosity codes will become assets.

To simplify computation of our numerical solution we make the assumption

Pðr;v ! v 0Þ ¼ 1mr �v>0ðr; vÞjðr; v 0Þ;

and recall that g(r,v) = g0(r) = constant whenever mr � v > 0 so that g(r,v) = g0(r). The result is that Is is then a function of posi-
tion only. This significantly improves the speed of solving the adjoint problem, as well as the memory requirements for using
it. Theoretical results in this paper do not need this assumption, which we make here as a matter of convenience.

We will now discretize the coefficients and approximate the integral operator appearing on the right hand side of (5),
denoted now by T. For r1 2 @R,

TIsðr1;v1Þ ¼ aðr1Þ
Z

mr1 �v2<0
Kðr1;v2ÞIsðrþðr1; v2Þ;v2Þdv2:

Notice that T f is function depending only on r, and in fact only on the boundary values of f. Since g depends only on
r; Is ¼

P1
k¼0Tkg will depend only on r and whether or not mr � v > 0. We thus define

uðrÞ :¼ Isðr; vÞ; r 2 @R; mr � v > 0:

We find that u : @R! R satisfies the equation

u ¼ Auþ g0; Af ðr1Þ :¼ aðr1Þ
Z

mr1 �v2<0
Kðr1;v2Þf ðrþðr1;v2ÞÞdv2:

In discretizing this operator, and integrals over directions in general, we use the change of variables,Z
mr �v<0

f ðrþðr;vÞ; vÞdv ¼
Z
@

Rf ðr0;vÞ@mNðr; r0Þdlðr0Þ;

@mNðr; r0Þ :¼ mr � ðr0 � rÞ
jr0 � rjd

:

ðA:1Þ

The term @mN is normal derivative (at r) of the free-space Green’s function for the Laplacian. One can show (see, e.g., the sec-
tion on double-layer potentials in [32]) that for r, r0 2 @R, mr � (r0 � r) [ jr0 � rj2. Therefore it is in fact an integrable function.
When d = 2 it is moreover bounded.

We now discretize the operator A. First split the boundary into non-overlapping segments f@RjgNp�1
j¼0 with @Rj centered at

rj, with length j@Rjj 6 h. Denote by Rf the (orthogonal) projection of f onto the space of piecewise constant functions (constant
on each segment @Rj). We also think of Rf as a vector in RNp and Rfj its components. Then, after the change of variables (A.1)
we have (at gridpoint ri)

Af ðriÞ ¼ aðriÞ
Z
@R

Kðri; dr� riÞ@mNðri; rÞf ðrÞdlðrÞ � aðriÞ
X

06j6Np�1
j–i

j@RjjKðri; drj � riÞ@mNðri; rjÞf ðrjÞ :¼
X

j

Ah
ijRfi: ðA:2Þ

This implicitly defines the matrix Ah.
We now define our discrete approximation to u as the piecewise constant function (vector) uh solving

uh ¼ Ahuh þ Rg: ðA:3Þ

We then define approximations Ih � Is,

Ihðr;vÞ :¼ uhðrÞ; r 2 @R; mr � v > 0: ðA:4Þ

Note that, in our implementation, we have chosen to represent angular integrals as integrals over the boundary. This works
for two reasons. First, as our adjoint solution depends only on position it is convenient to evaluate these sums. Second, if
instead a discretization were chosen that was uniform in angle, then (with only finitely many angles) one would often miss
the (small) detector in evaluation of the integral.
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